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Abstract: Freeway rerouting and replacement with a street-level boulevard are urban transportation
policies, that may help redress disproportionate air pollution burdens resulting from freeway
construction that took place during the mid-20th century. However, environmental justice activism
for freeway rerouting and urban green space creation may have the unintended consequence of
environmental gentrification. In this paper, we investigate the effects of freeway routing decisions on
exposure to traffic-related air pollution and neighborhood socioeconomic and demographic change.
We focus on the effects of rerouting the Cypress Freeway in West Oakland, along with the construction
of a street-level boulevard (Mandela Parkway), on the original freeway alignment. The impacts of two
rebuild scenarios, freeway rebuild-in-place and reroute, on near-roadway NOx and BC concentrations
are compared. We also assess changes in demographics and land use in West Oakland, between the
time when the Cypress Freeway was damaged by a major earthquake and after completion of Mandela
Parkway. Our research indicates that freeway rerouting reduced annual average concentrations of
both NOx (−38% ± 4%) and BC (−25% ± 2%) along the Mandela Parkway alignment. However, there
is evidence of environmentally driven neighborhood change, given that there are larger decreases
in the long-time Black population (−28%) and increases in property values (184%) along Mandela
Parkway, compared to West Oakland as a whole. There are some attributes along the Mandela
Parkway that enable low-income residents to live in proximity to the street-level boulevard, such as
affordable housing.

Keywords: freeways; boulevards; urban green space; transportation; traffic-related air pollution;
environmental gentrification

1. Introduction

The Federal-Aid Highway Act of 1956 called for the construction of 41,000 miles of interstate
highway by 1970 and created the Highway Trust Fund to finance it. From the mid-1950s to the early
1970s, the Interstate Highway System transformed US urban landscapes. Urban planners saw the urban
freeway as a solution to growing traffic congestion in cities, as well as a tool to achieve the urban renewal
goal of “slum” clearance [1,2]. Planners and engineers decided where freeways would be built, with
little to no citizen oversight [3]. Freeway construction resulted in the demolition, division, and forced
removal of poor communities of color, particularly African-Americans [1,4,5]. Freeways facilitated
white flight and accelerated white suburbanization [6,7], reinforced racial residential segregation [6,8],
and increased air and noise pollution [9,10], mostly in communities of color. Racial borders achieved
through discriminatory race-based planning processes, such as redlining, restrictive covenants, and
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zoning [11–15], were concretized into the built environment with freeway construction. The adverse
effects of freeway construction are environmental justice issues [9].

Freeway removal or rerouting is viewed as an opportunity to redress the health and environmental
impacts of freeway construction [2,16]. Teardown advocates seek to reroute freeways through
alternative corridors or bury them in tunnels or trenches. For communities near freeways, this practice
has significant implications for addressing traffic-related air pollution and associated adverse health
effects, including asthma exacerbation, lung impairment, impacts on fertility and birth outcomes, and
cardiovascular and respiratory mortality [17–19]. A quantitative analysis of the air quality benefits
of freeway removal is needed. Projects often involve building street-level boulevards in the former
corridor. Transforming the former freeway alignment into a landscaped boulevard also increases urban
green space. Green space has health benefits, such as increased physical activity and psychological
well-being [20]. However, a potential unintended consequence of efforts to expand urban green space
is the green space paradox [20]. Urban green space, aimed at addressing environmental injustice,
can make a neighborhood more desirable, potentially leading to gentrification and the displacement
of the residents for whom the green space was created. This paradoxical situation has been termed
environmental gentrification [21]. Studies indicate that freeway removal or tunneling can increase
property values [2,22–24]. However, the relationship between freeway removal and gentrification is
largely unexplored in the peer-reviewed literature. One study assessed the change in neighborhood
racial composition along an old freeway alignment replaced with a boulevard and found an increase
in the percentage of white population and a decrease in the percentage of Black population [23].
More research is needed to investigate how freeway removal or rerouting, and conversion of the old
alignment to a boulevard, affect demographic and socioeconomic change.

In West Oakland, residents successfully advocated for rerouting the Cypress Freeway and creating
a street-level boulevard along the original alignment. West Oakland, a redlined neighborhood [25] and
one of the few East Bay neighborhoods where African-Americans could own homes [26], was targeted
for, and adversely affected by, freeway construction. In 1958, the elevated, double-decked Cypress
Freeway (I-880) was completed. It bisected West Oakland and physically segregated the neighborhood.
Construction of the Cypress Freeway led to property demolitions and displaced 600 families [27].
The later-constructed Grove Shafter (I-980) and MacArthur (I-580) Freeways further segregated the
neighborhood. Freeway construction and other urban renewal projects in West Oakland destroyed
over 5000 housing units and resulted in economic decline in the area [26].

When the Cypress Freeway collapsed during the 1989 Loma Prieta earthquake, the California
Department of Transportation (Caltrans) favored a rebuild option on the same alignment [16]. However,
legislation such as the National Environmental Protection Act of 1969 provided the community with the
opportunity to participate in the decision-making process, an option that was not previously available.
Community activists organized to oppose reconstruction along the original route and redress economic
and environmental justice issues [16]. After the public comment period for the draft environmental
impact statement closed in 1991, Caltrans selected an alternative route around the perimeter of West
Oakland, in an industrial area (Figure 1). Some felt the proposal did not adequately address local
concerns and filed a discrimination suit, under Title VI of the Civil Rights Act of 1964 [16]. The case,
Clean Air Alternative Coalition v United States Department of Transportation, was settled out of court and
resulted in several additional mitigation measures [16,28], including the transformation of the former
Cypress Freeway route into a landscaped boulevard, later named Mandela Parkway. Construction of
Mandela Parkway began in 2002 and was completed in 2005.

In this study, we investigate the air pollution and neighborhood impacts of rerouting the Cypress
Freeway and constructing a street-level boulevard in West Oakland. Our specific objectives are to:
(i) quantify the local effects on air pollution of rerouting the Cypress Freeway, through modeling
near-roadway concentrations for two different rebuild scenarios, and (ii) examine neighborhood
socioeconomic and demographic impacts, as reflected by spatiotemporal changes in indicators of
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gentrification, to assess whether existing residents benefit from the freeway-to-boulevard conversion,
or are excluded through the phenomenon of environmental gentrification.

Int. J. Environ. Res. Public Health 2019, 16, x 3 of 15 

quantify the local effects on air pollution of rerouting the Cypress Freeway, through modeling near-
roadway concentrations for two different rebuild scenarios, and (ii) examine neighborhood socioeconomic 
and demographic impacts, as reflected by spatiotemporal changes in indicators of gentrification, to assess 
whether existing residents benefit from the freeway-to-boulevard conversion, or are excluded through the 
phenomenon of environmental gentrification. 

 
Figure 1. Map of West Oakland study area. 

2. Methods 

2.1. Exposure to Traffic-Related Air Pollution 

The Cypress Freeway collapsed in 1989, and construction of the rerouted freeway and Mandela 
Parkway were completed in 1998 and 2005, respectively. We assessed two freeway routing scenarios: (1) 
rebuild-in-place—the rejected plan to reconstruct the damaged Cypress Freeway on the original alignment, 
which divided a residential neighborhood in West Oakland—and (2) reroute—the completed plan, which 
involved reconstructing the freeway along a different route (I-880 reroute) to circle around, rather than 
bisect, a residential neighborhood in West Oakland, and replacing the removed section of the freeway with 

Figure 1. Map of West Oakland study area.

2. Methods

2.1. Exposure to Traffic-Related Air Pollution

The Cypress Freeway collapsed in 1989, and construction of the rerouted freeway and Mandela
Parkway were completed in 1998 and 2005, respectively. We assessed two freeway routing scenarios:
(1) rebuild-in-place—the rejected plan to reconstruct the damaged Cypress Freeway on the original
alignment, which divided a residential neighborhood in West Oakland—and (2) reroute—the completed
plan, which involved reconstructing the freeway along a different route (I-880 reroute) to circle around,
rather than bisect, a residential neighborhood in West Oakland, and replacing the removed section
of the freeway with a street-level boulevard (Mandela Parkway). Near-roadway concentrations of
nitrogen oxides (NOx) and black carbon (BC) are estimated along the Cypress Freeway rebuild-in-place
and Mandela Parkway for the year 2009. This year was selected due to the availability of traffic count
data for Mandela Parkway. West Oakland is a port-adjacent community (Figure 1) that is heavily
impacted by heavy-duty truck traffic [29]. Heavy-duty trucks are major sources of NOx and BC [30–32].

2.1.1. Traffic Volumes

Road network data for the I-880 reroute and Mandela Parkway were downloaded as shapefiles
from the California Department of Transportation [33] and the City of Oakland [34], respectively.
Traffic count data for Mandela Parkway are from the West Oakland Truck Survey [35], which provides
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manual truck survey counts and automatic vehicle counter data at three locations along Mandela
Parkway, made in August, 2008. The automatic counters characterized the vehicle fleet mix, including
proportions of light-duty vehicles, buses, and trucks by number of axles. This enabled us to estimate
counts for other vehicle types from the manual truck counts. To align with EMFAC [36] vehicle
types, two-axle/six-tire truck counts were mapped to light-heavy and medium-heavy duty trucks,
as described elsewhere [37]. Trucks with three or more axles were classified as heavy-heavy duty trucks
and all were assumed to be diesel-fueled, and referred to as heavy-duty diesel trucks hereafter [37].
Automatic counter-derived hourly temporal profiles for each vehicle type were used to estimate hourly
traffic volumes.

For the Cypress rebuild-in-place scenario, we combined measured traffic volumes for Mandela
Parkway and the I-880 reroute, and we assigned that traffic to the original Cypress Freeway route.
Traffic data on the I-880 reroute were obtained from the California Department of Transportation.
Available data include link-specific counts for total vehicle annual average daily traffic (AADT),
proportion of trucks, and truck counts broken down by number of axles. We estimated light-duty
vehicle counts by subtracting trucks from total vehicle counts. Two-axle/six-tire trucks and trucks
with three or more axles were apportioned as described above. Traffic volumes were mapped to
hourly estimates using month-of-year, day-of-week, and hour-of-day temporal allocation factors from
McDonald et al. [37].

2.1.2. Vehicle Emissions

Estimates of link-specific emission rates were calculated from hourly traffic volumes and emission
factors. NOx and PM2.5 emission factors by vehicle type were estimated using EMFAC model outputs
at the county level. For Mandela Parkway, emission factors were defined using estimates for running
exhaust emissions, with an average speed of 30 mph, which was the average vehicle speed indicated
by the automatic traffic counter [35]. For the freeway, emission factors were calculated for aggregated
vehicle speeds. We estimated BC emission factors using the EMFAC-derived PM2.5 emission factors,
combined with gasoline and diesel BC fractions of 18% and 72%, respectively [38–40].

2.1.3. Near-Roadway Air Pollutant Concentrations

We predicted traffic-related air pollutant concentrations using the RLINE line-source dispersion
model [41,42]. We previously evaluated RLINE model performance in predicting NOx and BC
concentrations at near-roadway monitoring sites in the San Francisco Bay Area [43]. The study domain
was overlaid with a 50 m grid, and model receptors were set at grid centroids. We modeled concentrations
within 250 m of Mandela Parkway and the I-880 reroute, since traffic-related air pollution levels are known
to be elevated at distances of up to about 200 m from major roadways [18,44,45]. The meteorological inputs
required for RLINE dispersion calculations were developed using AERMET [46], using meteorological
data from the National Weather Service for the nearby Oakland International Airport. We ran RLINE
using a unit emission rate (1 g m−1 s−1) at release heights of 0.3 m for light-duty vehicles, and 4 m for
heavy-duty trucks [47]. Dispersion model results were combined with hourly emissions estimates to
compute emission-weighted NOx and BC concentrations.

Total near-road pollutant concentrations were calculated as the sum of modeled traffic-related and
urban background concentrations. Ambient observations at the Bay Area Air Quality Management
District (BAAQMD) monitor at West Oakland were used to estimate NOx and BC background
levels for this study. To reduce the influence of local NOx emission sources at the background
site [48], and characterize the urban background contribution accurately, we defined background
NOx concentrations using the 25th percentile method of the West Oakland monitoring site data [49].
Measured BC concentrations were considered representative of urban background concentrations
for this pollutant and were used without adjustment. Background concentrations were added to
dispersion model estimates of traffic-related air pollution for each modeled receptor within the study
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domain. Predicted hourly concentrations were then used to compute annual average concentrations at
each receptor.

2.2. Neighborhood-Scale Changes in Demographics and Land Use

Census Data

Data from the 1990 Census, 2010 Census, and the 2006–2010 American Community Survey [50],
all calculated to the 2010 tract shapes, were used to investigate the impacts of the freeway rerouting
and conversion of the old alignment to a street-level boulevard on neighborhood demographic,
socioeconomic, and housing characteristics. Demographic variables include the total population
and the percentage of Black, Latino, and nonwhite (i.e., total non-white) residents. Socioeconomic
indicators include median household income, percentage of residents with at least a bachelor’s degree,
and percentage of residents living in poverty. Housing characteristics include median rent, median
home value, and percentage of renter-occupied dwellings.

We compared 1990 and 2010 census variables within 250 m of the Mandela Parkway alignment
to corresponding values for all of West Oakland (Figure 1). We used an area-weighting method to
estimate the demographic, socioeconomic, and housing composition within a 250 m band for each year.
A 250 m buffer was intersected with census tract areas using a Geographic Information System (GIS).
The percentage of each census tract’s area within the buffer was computed, and raw census data were
weighted using these percentages.

3. Results and Discussion

3.1. Spatial Distribution of NOx and BC Concentrations

Figure 2 illustrates the impact of the Cypress Freeway rebuild-in-place and reroute scenarios on
pollutant concentrations in the middle of West Oakland. The maps in Figure 2 substantiate that by
rerouting the Cypress Freeway, high concentrations shift from the middle of West Oakland (Figure 2a,c)
to around the periphery (Figure 2b,d). Large pollutant reductions are observed in the middle of
West Oakland. For the rebuild-in-place scenario (Figure 2a,c), mean annual average NOx and BC
concentrations are 36.1 ± 1.2 ppb and 1.72 ± 0.30 µg m−3, respectively. For the reroute scenario
(Figure 2b,d), mean annual average concentrations are 22.3 ± 0.8 ppb for NOx and 1.2 ± 0.03 µg m−3

for BC.
The estimated pollution reductions highlight the significance of the roadway type routed through

residential areas. Concentrations are higher -on the Cypress Freeway rebuild-in-place compared to the
Mandela Parkway, as indicated by the visibility of the freeway alignment in Figure 2a,c. Traffic volumes
on the Mandela Parkway are substantially lower than those on the Cypress Freeway rebuild-in-place.
Traffic volumes on the Cypress Freeway rebuild-in-place range from approximately 108,000 to 126,000
vehicles per day, with heavy-duty diesel trucks accounting for approximately 7% of total traffic. In
contrast, Mandela Parkway has average traffic volumes of approximately 500 to 3300 vehicles per day,
with heavy-duty diesel trucks accounting for approximately 5% of total traffic. These results provide
quantitative support for the expectation that reducing the traffic-carrying capacity through residential
areas provides air quality benefits. Replacing a freeway with a boulevard is one transportation policy
that reduces the traffic burden in residential areas, particularly regarding heavy-duty diesel trucks.
Another such policy is to revise designated truck routes [51].

On average, annual average reductions are larger for NOx (−38% ± 4%) than for BC (−25% ±
2%) in the middle of West Oakland. This may be due to the influence of the I-880 reroute on air
pollution near Mandela Parkway, particularly the intersecting segment at the south end, which is
evident when comparing the spatial pattern in annual average concentrations, shown in Figure 2b,d
versus Figure 2a,c. A stronger influence on BC than NOx is visible in Figure 2b,d, and suggests that BC
decays less rapidly than NOx, which is consistent with previous studies [52]. These results reveal that,
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ideally, alternative freeway corridors would not have segments in close proximity to the impacted
area of concern. The options for an alternative route were limited in West Oakland, due to existing
freeways, ports, and railroads.
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3.2. Distance–Decay Curves

Figure 3 shows average annual concentrations of NOx and BC at increasing distances from
Mandela Parkway. Each data point in the figure represents an averaged value for all model receptors
located within 25 m distance bands. For the Cypress rebuild-in-place scenario, we observe much higher
pollutant concentrations towards the east at all distances. Mean annual average concentrations of NOx
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and BC for a distance range of 0 to 25 m east of the freeway are 71.2 ± 6.0 ppb and 2.6 ± 0.1 µg m−3,
respectively. In contrast, mean annual average concentrations for distances of 0 to 25 m west of the
freeway are 55.6 ± 6.0 ppb for NOx, and 2.2 ± 0.2 µg m−3 for BC. The concentrations decrease noticeably
when moving away from the freeway in both directions, following distance–decay relationships similar
to those observed in other studies [45,52]. Pollutants decay at a similar rate on both sides of the Cypress
Freeway, with mean NOx concentrations decreasing by 49% ± 9% in the first 150 m east of the freeway,
and 50% ± 11% in the first 150 m to the west. BC concentrations decrease by 32% ± 6% and 33% ± 7%
in the eastward and westward directions, respectively. The more rapid decline in NOx concentrations
relative to the roadway edge is consistent with results from previous studies [52].
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Figure 3 further demonstrates the large concentration reductions, observed in Figure 2, that result
from rerouting the Cypress Freeway. Annual average pollutant concentrations within 25 m of Mandela
Parkway decrease by 66% ± 8% for NOx, and 48% ± 5% for BC, as a result of rerouting. Figure 3 shows
that concentrations are higher on the west side of Mandela Parkway than on the east side. In general,
locations to the west of Mandela Parkway are in closer proximity to the I-880 reroute. We do not
observe linear decreases in concentrations from east to west of the Mandela Parkway, because of the
varying distances separating it from the I-880 reroute, including a freeway segment that intersects
with Mandela Parkway at its south end. Overall, this analysis quantitatively substantiates claims that
freeway rerouting reduces the air quality burden on the residents of West Oakland.

3.3. Neighborhood Measures

3.3.1. Population Density

Residents advocated for the replacement of the original Cypress Freeway alignment with
a boulevard and relocation of the freeway to more industrial areas of West Oakland, instead of
rebuilding along the original alignment, which ran through residential areas. As shown in Figure 4a,
the population density in West Oakland is much more concentrated around Mandela Parkway than
the I-880 reroute, indicating that, on average, residents experience air quality benefits resulting from
freeway rerouting (Figures 2 and 3). Figure 4b shows a map of land use zoning designations for
West Oakland, based on data obtained from the City of Oakland [53]. Residential use and industry,
commercial, and truck-related uses account for approximately 60% and 23% of the land area in West
Oakland, respectively [54]. One primary area of residential use is along the southern portion of
Mandela Parkway, which corresponds to the area with the highest population density (Figure 4a),
while industrial uses are concentrated along the northern portion of Mandela Parkway. This difference
in land use explains the difference in population density between the two sections of Mandela Parkway.
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3.3.2. Neighborhood Change

Table 1 presents the averages for the West Oakland demographic, socioeconomic, and housing
indicators in 1990 and 2010. In 2010, West Oakland had lower proportions of nonwhite and low-income
populations than in 1990. As shown in Table 2, there was a substantial decrease in the Black population
in West Oakland (−23%), with a significantly larger decline along the Mandela Parkway (−28%).
Reductions in the Black population may be due to increases in the cost of housing. The median home
value increased by 136% in West Oakland and 184% in the area along the Mandela Parkway. Table 1
indicates that median home values were lower along the Mandela Parkway than in West Oakland in
1990, but significantly higher in 2010. Larger property value increases along the Mandela Parkway
compared to West Oakland as a whole may be due to the freeway rerouting and conversion to the
street-level boulevard, which would be consistent with previous studies [2,22–24]. In order to support
this evidence of environmentally driven neighborhood change, further analysis, using a hedonic
pricing model, is needed, to empirically attribute the larger rise in property values to the street-level
boulevard. Tables 1 and 2 also indicate that, during this same period, there was an increase in the Latino
population. The percentage change of nonwhite residents can ignore such an inter-ethnic shift [55],
which is important to consider when investigating environmental benefits for existing residents.

Table 1. Comparison of racial and socioeconomic composition for all tracts in West Oakland, and
within 250 m of the Mandela Parkway alignment in 1990 and 2010.

1990 2010

West Oakland 250 m of Mandela West Oakland 250 m of Mandela

% Nonwhite 89.3 92.7 77.8 83.6
% Black 66.4 72.8 43.2 44.5
% Latino 13.1 11.8 15.6 21.4
Median Household Income a $27,399 $22,869 $33,119 $33,790
% Poverty b 67.2 73.2 53.2 53.7
% Renter Occupied 81.4 76.5 74.1 72.4
Median Gross Rent a $644 $757 $859 $903
Median Home Value a $161,753 $154,366 $371,275 $415,425 *
% College Educated c 8.1 8.2 24.8 20.8

a In 2010 inflation-adjusted dollars b Percentage of households with income less than twice the poverty level c

Includes college and advanced degrees * p < 0.10.

Table 2. Change in racial and socioeconomic composition between 1990 and 2010 for all tracts in West
Oakland, and within 250 m of the Mandela Parkway alignment.

West Oakland 250 m of Mandela

Change in % Nonwhite −11.4 −9.1
Change in % Black −23.2 −28.3 *
Change in % Latino 2.5 9.6

Increase in Median Household Income a 34.6% 54.5%
Change in % Poverty b −13.9 −19.5

Change in % Renter Occupied −7.3 −4.1
Increase in Median Gross Rent a 29.7% 19.3%

Increase in Median Home Value a 136% 184%
Change in % College Educated c 16.8 12.6

a In 2010 inflation-adjusted dollars b Percentage of households with income less than twice the poverty level
c Includes college and advanced degrees * p < 0.10.

Table 2 suggests that gentrification occurred throughout West Oakland, including the area within
250 m of Mandela Parkway, between 1990 and 2010. This is reflected by decreases in the percentage of
nonwhite residents, percentage of residents living in poverty, and percentage of renter-occupied units,
along with a growth of median household income, median rent, median home value, and percentage of
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college educated residents. Table 2 also provides further evidence of environmental gentrification along
Mandela Parkway. In addition to a significantly sharper decrease in the Black population compared to
West Oakland, this area had larger increases in median household income and median home value,
and a larger decline in the percentage of residents living in poverty. The racial and socioeconomic
changes along the Mandela Parkway occurred without land use changes over the same period. Land
use projections in the West Oakland Specific Plan also show continued industrial and mixed-use zoning
designations along the northern portion of the Mandela Parkway [54]. A case study of the Greenpoint
neighborhood in Brooklyn found that retaining industrial zoning after environmental cleanup and
green space creation helps prevent residential development that drives out long-term working-class
residents [56]. In the present case, maintaining industrial land uses did not stop market-based processes
of neighborhood change.

The area along the Mandela Parkway had smaller increases in median rents (19% versus 30%).
One potential factor is the presence of affordable housing. There are three affordable housing sites
in the southern portion of Mandela Parkway [54], where the residential population along Mandela
Parkway is concentrated (Figure 4a). Preserving affordable housing can reduce the displacement of
long-time and low-income residents [57].

4. Conclusions

West Oakland residents saw rerouting of the Cypress Freeway and replacement with a street-level
boulevard as an opportunity to mitigate the air pollution burden that freeway construction had
caused in their neighborhood and increase access to urban green space. Our air pollution maps and
distance–decay curves reveal that rerouting the Cypress Freeway resulted in substantial reductions in
annual average NOx and BC concentrations in the middle of West Oakland when compared to the
Cypress Freeway rebuild-in-place scenario. These air quality benefits highlight the importance of
roadway types planned through residential neighborhoods, such as freeways and designated truck
routes. We observe that the new freeway route still impacts air pollutant levels in the Mandela Parkway
corridor, so it is critical to select an alternative route that does not have segments in close proximity
to residential areas. Limitations may be present in port communities and communities impacted by
goods-movement activities.

Environmental justice activism sometimes has unintended paradoxical consequences, where
efforts to improve a neighborhood make existing residents vulnerable to displacement [21]. This
displacement is facilitated through economic revitalization efforts that do not prioritize the needs
of existing residents. While the urban freeway was thought of as a tool for urban revitalization by
mid-century transportation planners, the removal and rerouting of the urban freeway are viewed as
opportunities for redevelopment. An investigation of West Oakland indicates that freeway rerouting
and construction of a street-level boulevard result in some environmental gentrification, with property
value increases and the displacement of long-time Black residents, similar to freeway removal and
tunneling. To ensure existing residents benefit from the air pollution reductions caused by freeway
rerouting, affordable housing and other anti-displacement strategies, such as inclusionary zoning and
renter protections, should be instituted [58].

There are some limitations in our analysis methods. Traffic counts on the Mandela Parkway
were based on a short-duration traffic survey. These counts were extrapolated to annual counts,
using temporal allocation factors from McDonald et al. [37] that were derived from freeway traffic
count data. Although traffic activity profiles can vary by roadway type [59], data on arterial traffic
patterns were not available. More extensive traffic count data on local arterials is needed to improve
estimates of the air quality impacts of freeway rerouting. Additionally, our analysis of neighborhood
change was conducted at the tract level. Using an area-weighting method to estimate demographic
and socioeconomic variables along the Mandela Parkway introduces error. As freeway removal
and replacement with a street-level boulevard receives increased attention as a contemporary urban
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transportation policy, due to aging freeway infrastructure [10,60], it is critical to accurately determine
who benefits from such urban green space projects.

Author Contributions: Conceptualization and methodology, R.F.P., R.A.H.; analysis, R.F.P.; writing—original
draft preparation, R.F.P; writing—review and editing, R.F.P, R.A.H.

Funding: This study was supported by the U.S. Environmental Protection Agency, under Assistance Agreement
No. FP-91781801-0, and the Robert and Patricia Switzer Foundation. The views expressed in this paper are solely
those of the authors and do not necessarily reflect the views of the project sponsors.

Acknowledgments: The authors thank Charisma Acey and Rachel Morello-Frosch for their helpful comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mohl, R.A. Stop the road: Freeway revolts in American cities. J. Urban Hist. 2004, 30, 674–706. [CrossRef]
2. Kraft-Klehm, J. 21st century futurama: Contemplating removal of urban freeways in the world of tomorrow.

Wash. Univ. J. Law Policy 2015, 1, 205.
3. Mohl, R.A. The Interstates and the Cities: The U.S. Department of Transportation and the Freeway Revolt,

1966–1973. J. Policy Hist. 2008, 20, 193–226. [CrossRef]
4. Mohl, R.A. Planned deconstruction: The interstates and central city housing. In From Tenements to the Taylor

Homes; Bauman, J.F., Biles, R., Szylvian, K.M., Eds.; Pennsylvania State University Press: University Park, PA,
USA, 2000; pp. 226–245.

5. Rose, M.H.; Mohl, R.A. Interstate: Highway Politics and Policy Since 1939; University of Tennessee Press:
Knoxville, TN, USA, 2012.

6. Fernandez, R.M.; Massey, D.S.; Denton, N.A. American Apartheid: Segregation and the Making of the
Underclass. Contemp. Sociol. A J. Rev. 1993, 22, 365. [CrossRef]

7. Baum-Snow, N. Did Highways Cause Suburbanization? Q. J. Econ. 2007, 122, 775–805. [CrossRef]
8. Connerly, C.E. From racial zoning to community empowerment: The interstate highway system and the

African American community in Birmingham, Alabama. J. Plan. Educ. Res. 2002, 22, 99–114. [CrossRef]
9. Bullard, R.D. The anatomy of transportation racism. In Highway Robbery: Transportation Racism & New Routes

to Equity; Bullard, R.D., Johnson, G.S., Torres, A.O., Eds.; South End Press: Cambridge, MA, USA, 2004;
pp. 15–32.

10. Mohl, R.A. The expressway teardown movement in American cities: Rethinking postwar highway policy in
the post-interstate era. J. Plan. Hist. 2012, 11, 89–103. [CrossRef]

11. Silver, S. The racial origins of zoning in American cities. In Urban Planning and the African American Community:
In the Shadows; Thomas, M., Ritzdorf, J., Ritzdorf, M., Eds.; Sage Publications: Thousand Oaks, CA, USA,
1997; pp. 23–39.

12. Pulido, L. Rethinking Environmental Racism: White Privilege and Urban Development in Southern California.
Ann. Assoc. Am. Geogr. 2000, 90, 12–40. [CrossRef]

13. Morello-Frosch, R.A. Discrimination and the Political Economy of Environmental Inequality. Environ. Plan.
C Gov. Policy 2002, 20, 477–496. [CrossRef]

14. Wilson, S.; Hutson, M.; Mujahid, M. How Planning and Zoning Contribute to Inequitable Development,
Neighborhood Health, and Environmental Injustice. Environ. Justice 2008, 1, 211–216. [CrossRef]

15. Taylor, D. Toxic Communities: Environmental Racism, Industrial Pollution, and Residential Mobility; New York
University Press: New York, NY, USA, 2014.

16. Praetzellis, M.; Praetzellis, A.; Van Bueren, T. Remaking connections: Archaeology and community after the
Loma Prieta earthquake. In Archaeology as a Tool of Civic Engagement; Little, B.J., Shackel, P.A., Eds.; Rowman
Altamira: Walnut Creek, CA, USA, 2007; pp. 109–130.

17. Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A Cohort Study of Traffic-Related Air
Pollution Impacts on Birth Outcomes. Environ. Health Perspect. 2008, 116, 680–686. [CrossRef] [PubMed]

18. HEI. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects,
Special Report No. 17; Health Effects Institute: Boston, MA, USA, 2010.

http://dx.doi.org/10.1177/0096144204265180
http://dx.doi.org/10.1353/jph.0.0014
http://dx.doi.org/10.2307/2074502
http://dx.doi.org/10.1162/qjec.122.2.775
http://dx.doi.org/10.1177/0739456X02238441
http://dx.doi.org/10.1177/1538513211426028
http://dx.doi.org/10.1111/0004-5608.00182
http://dx.doi.org/10.1068/c03r
http://dx.doi.org/10.1089/env.2008.0506
http://dx.doi.org/10.1289/ehp.10952
http://www.ncbi.nlm.nih.gov/pubmed/18470315


Int. J. Environ. Res. Public Health 2019, 16, 4072 12 of 13

19. Frutos, V.; González-Comadrán, M.; Sola, I.; Jacquemin, B.; Carreras, R.; Checa Vizcaino, M.A. Impact of air
pollution on fertility: A systematic review. Gynecol. Endocrinol. 2015, 31, 7–13. [CrossRef] [PubMed]

20. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge
of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [CrossRef]

21. Checker, M. Wiped Out by the “Greenwave”: Environmental Gentrification and the Paradoxical Politics of
Urban Sustainability. City Soc. 2011, 23, 210–229. [CrossRef]

22. Tajima, K. New Estimates of the Demand for Urban Green Space: Implications for Valuing the Environmental
Benefits of Boston’s Big Dig Project. J. Urban Aff. 2003, 25, 641–655. [CrossRef]

23. Cervero, R.; Kang, J.; Shively, K. From elevated freeways to surface boulevards: Neighborhood and housing
price impacts in San Francisco. J. Urban. Int. Res. Placemaking Urban Sustain. 2009, 2, 31–50. [CrossRef]

24. Kang, C.D.; Cervero, R. From Elevated Freeway to Urban Greenway: Land Value Impacts of the CGC Project
in Seoul, Korea. Urban Stud. 2009, 46, 2771–2794. [CrossRef]

25. Redlining California, 1936–1939. Available online: Joshbegley.com/redlining/oakland (accessed on
5 November 2018).

26. Gin, J. Movements, neighborhood change, and the media—Newspaper coverage of anti-gentrification activity
in the San Francisco Bay Area: 1995–2005. In Environment and Social Justice: An International Perspective;
Taylor, D.E., Ed.; Emeral Group Publishing Limited: Bingley, UK, 2010; pp. 75–114.

27. Replacing Oakland’s Cypress Freeway. Available online: https://www.fhwa.dot.gov/publications/
publicroads/98marapr/cypress.cfm (accessed on 5 November 2018).

28. Bullard, R.D.; Johnson, G.S.; Wright, B.H. Confronting environmental injustice: It’s the right thing to do.
Race Gend. Class 1997, 5, 63–79.

29. California Air Resources Board. Diesel Particulate Matter Health Risk Assessment for the West
Oakland Community. Available online: https://ww3.arb.ca.gov/ch/communities/ra/westoakland/documents/
westoaklandreport.pdf (accessed on 10 October 2019).

30. Dallmann, T.R.; Harley, R.A. Evaluation of mobile source emission trends in the United States. J. Geophys.
Res. Space Phys. 2010, 115. [CrossRef]

31. McDonald, B.C.; Dallmann, T.R.; Martin, E.W.; Harley, R.A. Long-term trends in nitrogen oxide emissions
from motor vehicles at national, state, and air basin scales. J. Geophys. Res. Space Phys. 2012, 117. [CrossRef]

32. Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.;
Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment.
J. Geophys. Res. Atmos. 2013, 118, 5380–5552.

33. California Department of Transportation. Caltrans GIS Data. Available online: http://www.dot.ca.gov/hq/

tsip/gis/datalibrary/index.php (accessed on 8 March 2019).
34. City of Oakland. Open Data Portal for Geospatial. Available online: http://oakland-oakgis.opendata.arcgis.

com/datasets/oakland-streets (accessed on 3 May 2019).
35. Bay Area Air Quality Management District. West Oakland Truck Survey. Available

online: http://www.baaqmd.gov/~{}/media/files/planning-and-research/care-program/final-west-oakland-
truck-survey-report-dec-2009.pdf (accessed on 6 March 2019).

36. California Air Resources Board. California Motor Vehicle Emission Factor/Emission Inventory Model
(EMFAC). Available online: https://www.arb.ca.gov/emfac/ (accessed on 27 March 2019).

37. McDonald, B.C.; McBride, Z.C.; Martin, E.W.; Harley, R.A. High-resolution mapping of motor vehicle carbon
dioxide emissions. J. Geophys. Res. Atmos. 2014, 119, 5283–5298. [CrossRef]

38. Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.;
Stevenson, E.D.; Kendall, G.R. Long-term changes in emissions of nitrogen oxides and particulate matter
from on-road gasoline and diesel vehicles. Atmos. Environ. 2008, 42, 220–232. [CrossRef]

39. Dallmann, T.R.; Kirchstetter, T.W.; DeMartini, S.J.; Harley, R.A. Quantifying On-Road Emissions from
Gasoline-Powered Motor Vehicles: Accounting for the Presence of Medium- and Heavy-Duty Diesel Trucks.
Environ. Sci. Technol. 2013, 47, 13873–13881. [CrossRef] [PubMed]

40. Dallmann, T.R.; Onasch, T.B.; Kirchstetter, T.W.; Worton, D.R.; Fortner, E.C.; Herndon, S.C.; Wood, E.C.;
Franklin, J.P.; Worsnop, D.R.; Goldstein, A.H.; et al. Characterization of particulate matter emissions
from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmos. Chem.
Phys. Discuss. 2014, 14, 7585–7599. [CrossRef]

http://dx.doi.org/10.3109/09513590.2014.958992
http://www.ncbi.nlm.nih.gov/pubmed/25212280
http://dx.doi.org/10.1016/j.landurbplan.2014.01.017
http://dx.doi.org/10.1111/j.1548-744X.2011.01063.x
http://dx.doi.org/10.1111/j.1467-9906.2003.00006.x
http://dx.doi.org/10.1080/17549170902833899
http://dx.doi.org/10.1177/0042098009345166
Joshbegley.com/redlining/oakland
https://www.fhwa.dot.gov/publications/publicroads/98marapr/cypress.cfm
https://www.fhwa.dot.gov/publications/publicroads/98marapr/cypress.cfm
https://ww3.arb.ca.gov/ch/communities/ra/westoakland/documents/westoaklandreport.pdf
https://ww3.arb.ca.gov/ch/communities/ra/westoakland/documents/westoaklandreport.pdf
http://dx.doi.org/10.1029/2010JD013862
http://dx.doi.org/10.1029/2012JD018304
http://www.dot.ca.gov/hq/tsip/gis/datalibrary/index.php
http://www.dot.ca.gov/hq/tsip/gis/datalibrary/index.php
http://oakland-oakgis.opendata.arcgis.com/datasets/oakland-streets
http://oakland-oakgis.opendata.arcgis.com/datasets/oakland-streets
http://www.baaqmd.gov/~{}/media/files/planning-and-research/care-program/final-west-oakland-truck-survey-report-dec-2009.pdf
http://www.baaqmd.gov/~{}/media/files/planning-and-research/care-program/final-west-oakland-truck-survey-report-dec-2009.pdf
https://www.arb.ca.gov/emfac/
http://dx.doi.org/10.1002/2013JD021219
http://dx.doi.org/10.1016/j.atmosenv.2007.09.049
http://dx.doi.org/10.1021/es402875u
http://www.ncbi.nlm.nih.gov/pubmed/24215572
http://dx.doi.org/10.5194/acp-14-7585-2014


Int. J. Environ. Res. Public Health 2019, 16, 4072 13 of 13

41. Snyder, M.G.; Venkatram, A.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. RLINE: A line source
dispersion model for near-surface releases. Atmos. Environ. 2013, 77, 748–756. [CrossRef]

42. Venkatram, A.; Snyder, M.G.; Heist, D.K.; Perry, S.G.; Petersen, W.B.; Isakov, V. Re-formulation of plume
spread for near-surface dispersion. Atmos. Environ. 2013, 77, 846–855. [CrossRef]

43. Patterson, R.F.; Harley, R.A. Evaluating near-roadway concentrations of diesel-related air pollution using
RLINE. Atmos. Environ. 2019, 199, 244–251. [CrossRef]

44. Brugge, D.; Durant, J.L.; Rioux, C. Near-highway pollutants in motor vehicle exhaust: A review of
epidemiologic evidence of cardiac and pulmonary health risks. Environ. Health 2007, 6, 23. [CrossRef]

45. Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of ultrafine particles near a major highway with
heavy-duty diesel traffic. Atmos. Environ. 2002, 36, 4323–4335. [CrossRef]

46. Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Lee, R.F.; Peters, W.D.;
Brode, R.W. AERMOD: A dispersion model for industrial source applications. Part I: General model
formulation and boundary layer characterization. J. Appl. Meteorol. 2005, 44, 682–693. [CrossRef]

47. Bishop, G.A.; Morris, J.A.; Stedman, D.H.; Cohen, L.H.; Countess, R.J.; Countess, S.J.; Maly, P.; Scherer, S. The
effects of altitude on heavy-duty diesel truck on-road emissions. Environ. Sci. Technol. 2001, 35, 1574–1578.
[CrossRef] [PubMed]

48. Bay Area Air Quality Management District. 2015 Air Monitoring Network Plan. Available online: http:
//www.baaqmd.gov/~{}/media/files/technical-services/2015_network_plan-pdf (accessed on 12 April 2019).

49. Van Poppel, M.; Peters, J.; Bleux, N. Methodology for setup and data processing of mobile air quality
measurements to assess the spatial variability of concentrations in urban environments. Environ. Pollut.
2013, 183, 224–233. [CrossRef] [PubMed]

50. Manson, S.; Schroeder, J.; Riper, D.V.; Ruggles, S. IPUMS National Historical Geographic Information System:
Version 14.0 [Database]; IPUMS: Minneapolis, MN, USA, 2019. [CrossRef]

51. Gonzalez, P.A.; Minkler, M.; Garcia, A.P.; Gordon, M.; Garzón, C.; Palaniappan, M.; Prakash, S.; Beveridge, B.
Community-Based Participatory Research and Policy Advocacy to Reduce Diesel Exposure in West Oakland,
California. Am. J. Public Health 2011, 101, S166–S175. [CrossRef]

52. Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-Roadway Air Quality: Synthesizing the Findings from
Real-World Data. Environ. Sci. Technol. 2010, 44, 5334–5344. [CrossRef]

53. City of Oakland. OakData. Available online: https://data.oaklandnet.com/dataset/Oakland-Zoning/ngyq-
upwh (accessed on 3 May 2019).

54. City of Oakland. West Oakland Specific Plan. Available online: www2.oaklandnet.com/Government/o/PBN/

OurOrganization/PlanningZoning/OAK028334 (accessed on 5 November 2018).
55. Pastor, M.; Sadd, J.; Hipp, J. Which Came First? Toxic Facilities, Minority Move-In, and Environmental

Justice. J. Urban Aff. 2001, 23, 1–21. [CrossRef]
56. Curran, W.; Hamilton, T. Just green enough: Contesting environmental gentrification in Greenpoint, Brooklyn.

Local Environ. 2012, 17, 1027–1042. [CrossRef]
57. Levy, D.K.; Comey, J.; Padilla, S. In the face of gentrification: Case studies of local efforts to mitigate

displacement. J. Afford. Hous. Community Dev. Law 2007, 16, 238–315.
58. California Environmental Justice Alliance. SB 1000 Implementation Toolkit. Available online: https:

//healthyplacesindex.org/wp-content/uploads/2018/01/2017_sb1000__implementation_toolkit.pdf (accessed
on 5 November 2018).

59. Lindhjem, C.E.; Pollack, A.K.; DenBleyker, A.; Shaw, S.L. Effects of improved spatial and temporal modeling
of on-road vehicle emissions. J. Air Waste Manag. Assoc. 2012, 62, 471–484. [CrossRef]

60. Napolitan, F.; Zegras, P. Shifting urban priorities: Removal of inner city freeways in the United States.
Transport. Res. Rec. 2008, 2046, 68–75. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.atmosenv.2013.05.074
http://dx.doi.org/10.1016/j.atmosenv.2013.05.073
http://dx.doi.org/10.1016/j.atmosenv.2018.11.016
http://dx.doi.org/10.1186/1476-069X-6-23
http://dx.doi.org/10.1016/S1352-2310(02)00354-0
http://dx.doi.org/10.1175/JAM2227.1
http://dx.doi.org/10.1021/es001533a
http://www.ncbi.nlm.nih.gov/pubmed/11329704
http://www.baaqmd.gov/~{}/media/files/technical-services/2015_network_plan-pdf
http://www.baaqmd.gov/~{}/media/files/technical-services/2015_network_plan-pdf
http://dx.doi.org/10.1016/j.envpol.2013.02.020
http://www.ncbi.nlm.nih.gov/pubmed/23545013
http://dx.doi.org/10.18128/D050.V14.0
http://dx.doi.org/10.2105/AJPH.2010.196204
http://dx.doi.org/10.1021/es100008x
https://data.oaklandnet.com/dataset/Oakland-Zoning/ngyq-upwh
https://data.oaklandnet.com/dataset/Oakland-Zoning/ngyq-upwh
www2.oaklandnet.com/Government/o/PBN/OurOrganization/PlanningZoning/OAK028334
www2.oaklandnet.com/Government/o/PBN/OurOrganization/PlanningZoning/OAK028334
http://dx.doi.org/10.1111/0735-2166.00072
http://dx.doi.org/10.1080/13549839.2012.729569
https://healthyplacesindex.org/wp-content/uploads/2018/01/2017_sb1000__implementation_toolkit.pdf
https://healthyplacesindex.org/wp-content/uploads/2018/01/2017_sb1000__implementation_toolkit.pdf
http://dx.doi.org/10.1080/10962247.2012.658955
http://dx.doi.org/10.3141/2046-09
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Exposure to Traffic-Related Air Pollution 
	Traffic Volumes 
	Vehicle Emissions 
	Near-Roadway Air Pollutant Concentrations 

	Neighborhood-Scale Changes in Demographics and Land Use 

	Results and Discussion 
	Spatial Distribution of NOx and BC Concentrations 
	Distance–Decay Curves 
	Neighborhood Measures 
	Population Density 
	Neighborhood Change 


	Conclusions 
	References

