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City Resiliency & Active Transportation Infrastructure 
 
ABSTRACT  
Transportation resiliency is the ability for a transportation system to maintain or return to 
a previous level after a disruptive event. The goal of this research is to understand how the 
availability of mode options contributes to transportation resiliency under economic shocks 
to the system caused by an abrupt gas price change. We assess the ability of Denver’s 
population to shift to these modes using a multinomial logistic regression mode choice 
model. Results of this study suggest that areas with lower stress transportation choices are 
more resilient.  Other significant factors include being nearer downtown and higher income.  
There is a cumulative effect as well: lower-income, more suburban households with poor 
active transportation options are the most vulnerable.  We also measure the financial 
benefit and resiliency value of various multi-modal transportation infrastructures – even if 
few people are using those facilities today – and how these investments may support more 
resilient communities.  
 
KEYWORDS 
Transportation resiliency, bicycling, walking, transit, multi-modal transportation, mode 
choice, mode shift, neighborhood  
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INTRODUCTION  
Transportation is critical to sustaining the economic and social vitality of communities. As 
these systems become more complex and integrated regionally, nationally, and 
internationally, their sustained safety and operation becomes increasingly essential to the 
social and economic activities of a community. Given this relationship, the continued 
operation of these transportation systems is critical to societal well-being (Freckleton et al 
2012).  

One aspect of transportation that is vulnerable to both abrupt variability as well as 
long-term change – thus causing significant disruption to individuals, households, and the 
overall community – is the cost of gas. Gas prices have been increasing over the last decade 
and are projected to continue to increase (Lipman 2006). According to data from the US 
Energy Information Administration, from 2002 – 2012, gas prices have increased more than 
10% annually, compounded (“Weekly U.S. All Grades All Formulations Retail Gasoline Prices 
(Dollars Per Gallon)” 2013). At this rate, gas prices would be more than $8.00/gallon in 
2020. Moreover, gas prices are also subject to extreme volatility and have the potential to 
increase dramatically in a short time period. Such abrupt fluctuations are difficult to guard 
against, as the events that might cause them are unpredictable and often half a world away. 

When such a crisis arises, the households that are already vulnerable because of 
their poor access to transportation and other vital resources tend to be most deprived 
(Fitzgerald 2012). Such vulnerable households are often those who have significant housing 
and transportation cost burdens. Because of the constraints and budgetary limitations to 
these households, they have the least access to coping resources if a crisis arises. 
Collectively, these households represent the weakest point in a city’s capacity to mitigate a 
disruptive event; in such a way, a catastrophic event not only threatens the usefulness of 
physical infrastructure and the built environment, but it also impacts social systems 
(Lipman 2006).   

Policies to overcome these risks have often focused on lowering gas prices (Haas et 
al 2008); however, gasoline and motor oil average only 21% of total transportation 
expenditures (Bureau of Labor Statistics 2013). To truly overcome these hazards, the goal 
must be to build resilient cities that offer a network of sustainable systems and 
communities. According to Newman et al., resilient cities are energy efficient, offer 
sustainable transport options, and possess power, water, and wastewater systems that are 
sustainable and built on a small scale; such cities build the local economy and nurture a 
sense of place (2009). A city without these resiliency measures is vulnerable to a threat that 
arises (Godschalk 2003). 

Broadly, resiliency is a system’s capacity to manage unexpected events without 
catastrophic failure (Heaslip, Louisell, and Collura 2009). In the book Resilient Cities: 
Responding to Peak Oil and Climate Change, Peter Newman et al. state that “[t]he agenda for 
future resilient cities is to have sustainable options available so that a city can indeed reduce 
its driving or VMT” (vehicle miles travelled). Newman et al. propose seven elements to 
achieve more resilient transportation systems that have reductions in VMT; bicycling, 
walking and transit – as alternatives to driving – are central to each of these elements 
(2009). VMT is linked to negative effects of traffic safety, environmental health, public 
health, energy consumption, and other social and economic costs of automobile use (Ewing 
and Cervero 2010). Reducing VMT, thereby reducing societal and household costs and 
energy consumption while improving health and safety, is fundamental to building 
resiliency. However, the capacity to reduce VMT – even if a community is not doing so today 
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– is equally important.  Understanding this capacity is where our study looks to make its 
contribution. 

Transportation mode choice, for the individual and community, is the opportunity 
to use multiple means of transportation. Providing such options better facilitates resiliency 
to potentially threatening events. If only one mode choice were viable after an event, the 
network would be overloaded and weakened as users would scramble for that one option; 
however, if more than one option were available, the network would be less compromised 
(Freckleton et al 2012). Thus, creating a built environment with transportation alternatives 
and land uses that support them is an important and effective strategy for lowering total 
transportation costs (Haas et al 2008) and building resiliency into a system (Freckleton et al 
2012). 
 The goal of this work is to measure resiliency under a drastic gas price increase in 
terms of mode shift from driving to walking, bicycling, and transit use. Unlike the existing 
literature on resiliency, we are less interested in what mode people are choosing today and 
more interested in what mode people have the ability to choose in extreme event 
circumstances. Although this approach is similar to the Center for Housing Policy 
affordability work that measures combined housing and transportation costs (Lipman 
2006), we make one important distinction: we do not assume that people pursue the same 
transportation mode as they did in the before case. In this way, this research offers an 
approach to measuring the transportation resiliency in Denver after a dramatic gas price 
event, and in the process, reveals how certain communities and neighborhoods 
demonstrate different mode shifts based upon varying environmental and demographic 
circumstances.  This work also presents us with a unique understanding of the option value 
of multi-modal infrastructures. 
 
METHODOLOGY 
The analysis in this paper focuses on the mode share for work trips in Denver following a 
drastic gas price increase. Work trips were selected as they represent travel that people 
would likely still need to make after a gas price event. To assess this hypothetical mode 
shift, actual trips made in the region are analyzed under a series of gas price scenarios using 
a multinomial logistic regression mode choice model. These trips were extracted from the 
Denver Regional Council of Governments (DRCOG) Focus travel model, a regional activity-
based planning model. This model was based on an in-depth travel behavior survey of 
12,000 households in the Denver region, called the Front Range Travel Counts (Denver 
Regional Council of Governments 2013). 

There were a total of 143 home origins, which comprises the total number of census 
tracts in the City and County of Denver as configured in the 2010 US Census; of these 
origins, the top four work commute destinations were extracted. Four destinations were 
selected as this number offers a sizable portion of the total trips taken in the census tract 
with respect to the overall distribution while still offering a viable number of total regional 
trips to analyze. Trips to the top four destinations were investigated for each of the 143 
census tracts, for 572 in total. Data for each of the four transportation modes were collected 
for each of these 572 trips; this equals 2,288 different combinations. 

In order to understand the bike, pedestrian, auto, and transit mode choices for each 
combination, the Google Maps Engine Lite tool was consulted to determine the suggested 
route for each mode between these origins and destinations. The geographic coordinates of 
each census tract centroid was determined and entered into Google Maps as the starting 
location. For the neighborhood destinations, the geographic coordinates of the centroid 
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were also used. However, if the destination was outside of Denver neighborhoods and the 
destination was a city, Google Maps was consulted to provide the best location for the city’s 
geographic coordinates (as the centroid of the city limits does not often represent a city 
center). From these results, the top trip route option was selected for each mode and 
several variables were recorded as follows:  

• For the auto mode, 
o Travel time (minutes); 
o Trip length (miles); and  
o Whether the trip required limited access highway travel. 

• For the bicycle and pedestrian modes,  
o Travel time (minutes);  
o Trip length; and  
o Level of traffic stress for the trip. 

• For the transit mode, 
o Travel time (minutes) and  
o Level of traffic stress for the trip.  

Traffic Stress Methodology 
In order to more realistically assess the alternative mode options for each trip, accounting 
for the fact that not everyone will bike, walk, or use transit – even in situations where those 
modes offer the lowest dollar cost options – we adapted and refined the bicycle level of 
traffic stress approach developed by Mekuria et al (2012). This methodology classifies 
streets based upon their bicycle level of traffic stress (LTS) that they exhibit to the user; a 
lower stress trip is one that does not require a bicyclist to exceed their tolerance for traffic 
stress and does not involve an excessive detour. The Mekruia et al traffic stress approach is 
measured through variables such as road width, traffic speed, presence of a parking lane 
and whether the bicycles are mixed in traffic, in bike lanes, or on segregated paths (2012). 
In this research, we applied our own adaptation of this methodology to the pedestrian and 
transit modes as well. GIS was used to assign traffic stress levels to Denver streets by the 
bike and walk mode, while Google Maps was used to determine transit traffic stress. By 
estimating the bike/pedestrian/transit LTS options, we were able to more realistically 
assess the ability of different population groups across Denver to shift to these modes from 
the driving mode. 
 
Bicycle & Pedestrian Level of Traffic Stress 
In this methodology, we attempted to reasonably measure the stress that different types of 
bicyclists might experience while relying on variables that were readily available or easily 
measurable. Our methodology focused on three traffic and street characteristics: speed, 
number of travel lanes, and the presence of bicycle facilities. LTS 1 is acceptable for all users 
and includes paved off street paths and trails only. Many adults tolerate LTS 2, while LTS 3 
is unacceptable to most. Finally, LTS 4 is the highest stress and is tolerated by few 
individuals (Mekuria et al 2012). Table 1 summarizes these levels. 
 
Table 1: Criteria for bicycle level of traffic stress (LTS), based on posted speed limit and 
number of travel lanes (adapted from Mekuria et al 2012) 

 ≤25 mph =30 mph ≥35 mph 
2-3 lanes LTS 2 LTS 3 LTS 4 
4-5 lanes LTS 3 LTS 4 LTS 4 
6+ lanes LTS 4 LTS 4 LTS 4 
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As an addendum to the above criteria, we assessed bicycle infrastructure on streets 
and adjusted traffic stress accordingly.  For instance, if a street characterized by LTS 4 had a 
bike lane, this street was reassigned to LTS 3.  
 As with the bicycle LTS methodology, the pedestrian approach we developed 
similarly intends to measure the stress that pedestrians experience on a roadway by using 
data that are measurable and readily available. The pedestrian LTS was based upon three 
primary characteristics: speed, number of travel lanes, and sidewalk width. Since the bicycle 
LTS methodology measured these first two variables, as well as the presence of bicycle 
facilities, the pedestrian LTS methodology was built upon the bicycle LTS designations.  
Additionally, the pedestrian analysis included sidewalk width.  Table 2 describes each 
pedestrian LTS designation; in the criteria, the larger the sidewalk widths contribute to 
lower pedestrian level of traffic stress.  
 
Table 2: Criteria for pedestrian level of traffic stress (LTS) based upon sidewalk width and 
bicycle LTS  

 Bike LTS 1 Bike LTS 2 Bike LTS 3 Bike LTS 4 
Sidewalk ≥5ft LTS 1 LTS 1 LTS 1 LTS 3 
Sidewalk 4ft n/a LTS 1 LTS 2 LTS 3 
Sidewalk 3ft n/a LTS 2 LTS 3 LTS 4 
Sidewalk ≤2ft n/a LTS 3 LTS 4 LTS 4 

 
For both the bike and pedestrian traffic stress, additional variables could be 

included to calculate trip stress. However, given limitations in data and the fact that 
hundreds of trips were analyzed, only the aforementioned variables were investigated for 
both modal options. 

 
After each street in Denver was assigned these traffic stress levels, the top four work 

commute trips for each of the 143 Denver census tract origins were assigned a traffic stress 
level based upon the stress of the streets along the trip route (route determined by Google 
Maps as described in the introduction to this section). The LTS of the route was predicated 
by the highest traffic stress value assigned to any street segment along the way; thus, if a 
route contained largely LTS 2 streets but crosses one LTS 4 arterial, then that route was 
assigned the highest stress experienced by the user, or LTS 4. The rationale behind this is 
that a user will likely experience the stress of the higher LTS street when crossing that 
street even if the street that they were travelling on was defined by a lower stress level. 
These values were assessed and recorded for all 572 trips for the mode.  
 
Transit Level of Traffic Stress 
Instead of focusing on street and traffic characteristics for the transit LTS methodology, this 
approach analyzed the transit options available for these four trips using Google Maps.  
Research conducted in the US and Europe has shown an individual preference for light rail 
over bus (Scherer 2010); thus, in this methodology, light rail transit stress was based upon 
two criteria: the number of transfers required to make the trip and whether these transit 
connections were available by light rail transit or commuter bus, as follows: 
• LTS 1: Light rail only 
• LTS 2: Light rail with one transfer; or bus only (no transfers) 
• LTS 3: Light rail with two transfers; or any other transit combination (bus-bus or 

light rail-bus) with one transfer 
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• LTS 4: Light rail with three or more transfers; or any other transit combination 
(bus-bus or light rail-bus) with two transfers 

For the transit traffic stress investigation, as with the pedestrian and bicycle mode, other 
variables may broaden the understanding of traffic stress. However, given the scope of this 
project, and the fact that hundreds of trips were investigated, the transit type and transfer 
option were the only variables explored.  
 
Statistical Methodology 
The statistical relationship between mode choice and a drastic shift in gas price, with 
respect to the level of traffic stress of the various modes, was investigated by using a 
multinomial logistic regression model. The intent was to present a realistic understanding 
of who might be able to access certain facilities in accessing their actual destinations. Many 
mode choice investigations fail to differentiate between different types of infrastructures. 
For instance, the bicycle pavement marking known as the sharrow, (or shared-use arrow, 
used in conditions where the bicycle and vehicle share the lane of traffic) might not be 
modeled any differently from a bike lane or a cycle track. In reality, there is a percentage of 
the population that would ride everyday on a cycle track but not in a bike lane; and there is 
another percentage of the population that would ride in a bike lane but not on a route 
marked with a sharrow. These distinctions are what we were trying to better model in this 
work.  

Accordingly, the LTS proxy variables took into account the following: the presence 
of different types of bicycle, pedestrian, and transit infrastructure; characteristics of the 
street such as number of lanes and speed of traffic; and functional classification of the 
street. Also considered were population density and socioeconomic status (SES) variables 
such as household income and the percentage of minorities. Interactions among the 
selected variables were also tested and analyzed; in particular, interactions between the 
LTS and SES variables were tested. The variables used in the final models were selected in 
an effort to maximize model significance using the AIC value. With respect to multi-
collinearity, none of the variables used in the final models were highly correlated with one 
another.  

The basic structure of a multinomial logistic regression mode choice model is 
derived from a basic logit model.  The following generalized logit equation determines the 
probability of choosing a specific mode (Martin and McGuckin 1998). 

�� =
���

∑ �������
 

where: 
��  = probability of somebody choosing mode i = 1, 2, . . . , k; 
��  = utility function describing the relative attractiveness of mode i; and 
∑ ����

��� = sum of the functions for all available mode alternatives 
The probability of choosing a particular mode depends on the above utility function 

relative to the utility functions for all the other mode options. A multinomial logistic 
regression simultaneously considers a binary logit model for every possible combination of 
outcomes; in this study, the four different outcomes are equivalent to six binary logit 
models (Long 1997).  One assumption of this model is that the probabilities related to the 
mode choices sum to 1: 

������	
��+ �����
���+ ���
�
���+ ����
�
��� = 1 
For such a probability-based model, the multinomial logistic regression equation is: 
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 for m = 1 
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�
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���

 for m > 1 
where: 

y = dependent variable, 
j = number of categorical outcomes for four mode choices, 
��� = �|	
 = probability of choosing mode m given x, 
	�  = independent predictor variable, and 
β = estimated coefficient representing the effects of the independent variable. 

The probability of the four modes (transit, walking, biking, and driving) was 
calculated for the top four work trip destinations for each Denver census tract origin using 
the multinomial logistic regression model for a baseline gasoline price of $2.70 and a 
doubling of that price to $5.40 per gallon. The base gas price was chosen because it was the 
prevailing gas price estimate for Denver region when the Front Range Travel Survey, an in-
depth household travel survey for the region from which our data were gathered, was being 
administered (Denver Regional Council of Governments 2013). This gas price was used to 
determine the average annual cost of gas for each of the 572 commute trips using upon an 
average vehicle efficiency of 20.2 miles per gallon (Environmental Protection Agency Office 
of Transportation and Air Quality 2007). We then calculated the average annual percent of 
the median household income spent on gas for each census tract on commute trips, a value 
that could be doubled in the model to reflect the resiliency scenario. This informed the cost 
of driving for these work commute trips and was an important area of analysis that will be 
reviewed in the results section of this report. 

Table 3 provides the descriptive statistics of all of the data that were put into the 
model. This includes the following for each variable: the minimum and maximum values, the 
mean, standard deviation (SD), and number of observations. Table 4 shows the results of 
the mode choice model.  Results of the mode shares for a given home census tract were 
weighted based upon the relative number of trips.  



Table 3: Descriptive statistics of the data used in the multinomial logistic regression mode 
choice model 
 Variable Obs Mean SD Min Max 
 Population of origin census tract 2,288 4,129.42 1,567.84 314.00 9,462.00 
 Population density of origin census tract 2,288 7,032.95 3,938.61 28.51 24,770.81 
 Percent minority in origin census tract 2,288 25.20 17.12 0 79.91 
 Median HH income of origin census tract 2,288 52,354.48 24,550.32 9,571.00 153,571.00 
 # of driving miles to work (avg.) 2,288 6.47 4.74 0 27.40 
 # of minutes driving to work (avg.) 2,288 13.80 6.61 0 40 
 Whether car trip to work includes hwy 

driving (avg. of 0, 1 variable) 
2,288 0.46 0.50 0 1 

 Proportion of income spent on annual 
driving to work (avg.) 

2,288 0.01 0.01 0.00 0.11 

 # of minutes for transit trip to work (avg.) 2,224 44.60 23.73 0 123 
 # of transfers for transit trip to work (avg.) 2,224 0.55 0.64 0 3 
 Whether transit trip to work includes light 

rail (avg. of 0, 1 variable) 
2,224 0.14 0.35 0 1 

 Transit LTS score for trip to work (avg.) 2,224 2.48 0.72 0 4 
 # of walking miles to work (avg.) 2,288 5.86 13.01 0 304.00 
 # of minutes walking to work (avg.) 2,288 106.00 71.62 0 469 
 Walking LTS score for trip to work (avg.) 2,288 3.60 0.66 0 4 
 # of biking miles to work (avg.) 2,288 6.22 4.28 0 26.80 
 # of minutes biking to work (avg.) 2,288 35.35 23.30 0 138 
 Biking LTS score for trip to work (avg.) 2,288 3.93 0.44 0 4 
 
Table 4: Results of the mode choice model 

  Variable Transit   Walking   Biking   
 Intercept 0.6197 *** 1.9941 *** 1.1106 *** 

Miscellaneous             
 Population of origin Census Tract 0.00008   0.00021   0.00014 *** 
 Population Density of origin Census Tract 0.000071 *** 0.000095 *** 0.000055 *** 
 Percent Minority in origin Census Tract 0.00799 *** 0.0155 *** 0.0032 * 
 Median HH Income of origin Census Tract 0.00000294 ** 0.000003639 ** 0.000007592 *** 

Driving             
 # of driving miles to work (avg.) 0.1477 *** 0.7477 *** 0.1907 *** 

  
Proportion of income spent on annual 
driving to work (avg.) 45.4014 *** 66.357 *** 50.6937 *** 

Transit             
  Transit LTS score for trip to work (avg.) 0.4131 *** 0.0249   0.3663 *** 

  
Whether transit trip to work includes light 
rail 0.7098 *** 0.4461 *** 0.2331 ** 

Walking             
  Walking LTS score for trip to work (avg.) 0.313 *** 0.3473 *** 0.2145 *** 

Model Fit             
  Observations 2,224           

 

* p <.10;  ** p < .05;  *** p< .01 
 
RESULTS & DISCUSSION 
In reporting the results, we first explore expected trends at the census tract level for the 
entire city and county of Denver, and then we explore trends and contributing factors 
further by investigating expected changes for six specific census tracts. We compare mode 
shifts at the census tract level in Denver in a scenario where the gas price doubles, from a 
base price of $2.70 per gallon (the baseline scenario) to a two-fold increase of $5.40 (the 
resiliency scenario). Figure 1 depicts car mode share in the resiliency scenario while Figure 
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2 depicts car mode share with income held constant at the median. In 2011, the median 
household income in Denver was $59,230 (Metro Denver Economic Development 
Corporation 2013). 
 

Those census tracts that have the highest change in driving mode share, displayed 
as the darker shaded color, have a greater shift away from driving to transit, biking, and 
walking. Many of these census tracts appear to be located away from the Central Business 
District (CBD), particularly scattered throughout the southwestern areas of Denver. On the 
other hand, those census tracts with the lowest shift in driving mode share appear to be 
clustered around the CBD and in the northeast areas of Denver. These more urban census 
tracts already have a lower driving mode share, thus the driving mode shift after the 
resiliency scenario is less acute. Other socio-economic or demographic factors may also 
affect the shift as it occurs in different geographic census tracts.  
 

In Figure 2, where median income is held constant, the darker colors again indicate 
the higher shift away from driving mode share. There is a significant group of these census 
tracts with a higher shift away from the driving mode share located south of the CBD. These 
census tracts are not adjacent to the CBD, but they are surrounded by high ease-of-use 
transit and bicycling facilities: the southeast and southwest light rail transit lines service the 
area, as do multiple bicycle paths including the Platte River and the Cherry Creek bike path. 
Thus, it appears that there are factors in addition to income that may be impacting mode 
share, and our next step attempts to delve deeper into these issues. 
 
 



 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 1: Change in car mode share by census tract in City 
and County of Denver after the resiliency scenario, in 
relation to the major streets and highways, bicycle paths, 
and light rail transit network 

Figure 2: Change in car mode share by census tract in City 
and County of Denver after the resiliency scenario where 
income is held constant at $59,230 (based upon 2011 
median household income as reported by the Denver Metro 
Chamber of Commerce) 

CBD 
CBD 



Study Area Characteristics 
For closer analysis, we selected three census tracts that are situated closer to the City center 
and three that are in more suburban locations. We also chose census tracts that have low, 
middle, and high median household incomes, selecting two in each income range (based on 
2010 ACS household income values) (Social Explorer 2013). To facilitate the comparison, 
we also selected census tracts that share the following two top work destinations: the 
Denver Central Business District and the City of Aurora (located outside of Denver city 
limits). Table 5 describes these selections in more detail. 
 
Table 5: Household and housing characteristics of each origin census tract in Denver (Social 
Explorer 2013) 
 Low income Middle income High income 
 Globeville College 

View/ S 
Platte 

City Park 
West 

Sunnyside Country 
Club 

Stapleton 

Driving 
distance to 
the CBD 
(miles) 

3.4 17.8 2.9 3.7 2.9 12 

Median HH 
income 

$24,190 $30,076 $51,371 $51,163 $130,321 $133,393 

No. persons 
per HH 

3.1 3 2.2 2.5 2.5 2.8 

Home values $164,200 $170,300 $325,100 $218,500 $723,100 $458,600 
Monthly rent $833 $710 $667 $714 $964 $1682 
Pop density 1544 4258 7302 5705 4761 1686 
% Non-white 30% 37% 30% 20% 16% 17% 
% Hispanic 
or Latino 

80% 64% 10% 62% 4% 16% 

 
Before exploring active transportation infrastructure, we first look at two other 

factors seemingly important to resiliency: proximity to downtown and income. 
 
Proximity to Downtown 
Figures 3 and 4 illustrate the car mode share change from each of the six study sites to two 
common destinations – the CBD and Aurora – which are among the top four work commute 
destinations for each of our sites. The CBD and Aurora represent an urban and suburban 
destination, respectively. Overall, driving mode share is consistently higher for suburban 
census tracts origins as compared to their urban counterparts. Another interesting finding 
is that the low-income census tracts – Globeville and College View/S Platte – also are quite 
different in their distance to the CBD (3.4 and 17.8 miles respectively) but do not display the 
driving mode share difference that the high-income study areas do. 
 

When comparing the trends in Figures 3 and 4, we see that the car mode share from 
Stapleton to the CBD (95%) and to Aurora (97%) for the resiliency scenario remains fairly 
unchanged. In these cases, already nearly all of the households are opting to drive for both 
their trip to Aurora and the CBD. However, most of the other study areas show a significant 
increase in car mode share for the trips to Aurora when compared to the CBD for the 
resiliency scenario. Because of this overall higher mode share across all study areas, the 
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difference in car mode share between urban and suburban census tracts and Aurora is less 
dramatic than it was in Figure 3. 
 
Figure 3: Car mode share to the CBD in the baseline and resiliency scenario for the six 
census tract study areas 

    
Figure 4: Car mode share to Aurora in the baseline and resiliency scenarios for the six 
census tract study areas 

 
Income 
A drastic gas price increase would impact low-income households more than high-income 
areas in terms of the percent of income spent on gas. In other words, a census tract with 
high household income has more capacity to withstand increases in gas price than areas 
with more constrained financial resources. For this reason, we would expect to see less of a 
change in driving mode shift for high-income areas when compared to lower income areas 
after the resiliency scenario. This trend is indeed apparent in Figure 4.  
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To further understand this trend, we determined the percent income spent on gas 

for each trip based upon the length of the trip in miles and assuming an average vehicle 
efficiency of 20.2 miles per gallon (Environmental Protection Agency Office of 
Transportation and Air Quality 2007). Figure 5 reveals that higher income households spent 
the least percentage of their household budget on gas for trips to Aurora than any other 
census tracts being reviewed – even after the resiliency scenario.  
 
Figure 5: Percent of income spent on gas for households traveling to Aurora at both the 
baseline and resiliency scenarios 

  
In order to understand how other factors may be influencing mode share, we again 

hold income constant. In doing so, we expect to better understand the extent to which 
proximity to downtown and other variables may impact mode share. With a median 
household income again adjusted to $59,230 for the six census tract study areas, car mode 
share in certain areas experience some interesting changes, as shown in Table 6. Country 
Club and Stapleton (median household income above $130,000) experience a greater 
driving mode share under this adjusted income level with the resiliency scenario. With less 
income at their disposal, the formerly higher income areas have a greater shift away from 
driving when their income is adjusted to $59,230. The lower income households in 
Globeville and College View/S Platte have less of a shift away from the driving mode share 
when their income is adjusted.  
 

Another trend under the adjusted incomes is that two of the more urban census 
tracts, Country Club and Globeville, have a higher shift away from the driving mode share 
after the resiliency scenario. In these areas, more people are opting to take alternative 
forms of transportation with the resiliency scenario. However, City Park West, the third 
urban census tract, does not display this trend, which suggests that another demographic or 
environmental factor may be involved in favoring Sunnyside (suburban census tract) to 
have a greater shift driving mode shift. This factor will be further discussed in the next 
section.
 



Table 6: Car mode share normalized for six census tract study areas under a normal and an 
adjusted income of $59,230 (based upon 2011 median household income as reported by the 
Denver Metro Chamber of Commerce) 
 

Car mode share under  
actual 2012 median household income 

Car mode share with  
income held constant at $59,230 

 Baseline 
scenario 

Resiliency 
scenario 

Change in 
car mode 

share 

Car mode 
share, 

adjusted 
income 

Resiliency car 
mode share, 

adjusted 
income 

Change in 
mode 
share 

Country 
Club 

73.5% 71.2% -2.3% 75.8% 70.6% -5.2% 

Stapleton 94.6% 93.8% -0.8% 95.1% 93.1% -2.0% 
City Park 
West 

58.0% 53.3% -4.7% 57.9% 54.0% -3.9% 

Sunnyside 81.9% 75.8% -6.1% 82.1% 77.2% -4.9% 
Globeville 76.7% 64.6% -12.1% 79.5% 76.0% -3.5% 
College 
View/S 
Platte 

87.6% 76.8% -10.8% 89.6% 86.2% -3.4% 

 
 
Alternative Transportation Infrastructure  
An important influence to mode share for certain census tracts is the availability of low 
stress transportation options. With more transportation modes available to urban origins, 
individuals and households – particularly those with budget constraints – may choose 
transportation options other than driving for their work travel needs. Thus in addition to 
proximity to downtown, another variable that impacts mode shift is availability of active 
transportation options – and the level of traffic stress of those options. 
  

In the mode choice model, bicycle LTS was removed since it was highly correlated to 
walk LTS, which includes the additional factor of sidewalk width. Thus, we analyze walk LTS 
to understand how bike LTS may also affect mode choice. Table 7 provides the walk and 
transit LTS values for all trips in the census tract study areas. For the walk mode, only three 
trips to the CBD from census tract origins are of the lowest traffic stress, LTS 3: Sunnyside, 
City Park West, and Country Club. Consequently, these trips have some of the highest walk 
mode share, respectively: 4%, 22%, and 10% (reported for the baseline scenario). It is 
interesting to note that Country Club and City Park West are urban areas (while Sunnyside 
is not); yet, they all have the highest walk mode shares of all six-study areas. This suggests 
that the low traffic stress walking experience for those traveling from Sunnyside to the CBD 
contributes in improving the walk mode share for this suburban area. During the resiliency 
scenario, these walk mode shares for Sunnyside, City Park West, and Country Club increase 
to: 6%, 24%, and 11%. Because these trips are less stressful, traveling along streets with 
lower speed, wider sidewalks, and fewer lanes, individuals are more likely to shift to the 
walk mode for their work transportation needs. 
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Table 7: Level of Traffic Stress (LTS) for biking, walking and transit, for all census tract 
origins to the CBD and Aurora 

 
 

Trips to the CBD Trips to Aurora 
Transit 

LTS 
Walk 
LTS 

Transit 
LTS 

Walk 
LTS 

Country Club 3 3 2 4 

Stapleton 2 4 4 4 

City Park West 2 3 3 4 

Sunnyside 2 3 2 4 

Globeville 2 4 3 4 

College View/S Platte 3 4 3 4 

 
Another area of analysis that indicated that factors related to the transportation 

environment impacted the trips from Country Club, City Park West, and Sunnyside were the 
results in Table 6. We will recall that in Table 6, when income is held constant, the areas 
with the largest shifts away from driving mode share include these census tracts. Given that 
only two of the census tracts (Country Club and City Park West) are proximate to downtown 
suggests that other factors allow for the higher shift away from driving mode share for 
Sunnyside, which is not as near to downtown. After this analysis of alternate modes of 
transportation, it is clear that level of traffic stress is important in impacting that mode shift. 
 

When compared to trips to the CBD, walking trips to Aurora are more stressful. No 
trip to Aurora by foot are less than LTS 4; this is not surprising since most trips to Aurora 
require travel along busy roads with narrow or nonexistent sidewalks. All of the trips to 
Aurora are also over 5.6 miles in length. Although trip length was not a factor in the 
determining pedestrian LTS, these long trips are not realistic on foot. This suggests the 
extent to which this suburban destination does not support the pedestrian mode of 
transportation and how the driving mode share to Aurora from households throughout 
Denver remains as high as it is (refer to Figure 4). 
 

Transit LTS is measured by number of transfers and whether the trip includes light 
rail transit or commuter bus. Of all of the trips in the study areas, the only trip of LTS 4 is 
from Stapleton to Aurora. At the same time, this trip has the lowest transit mode share of 
3.2% at the baseline scenario. Trips that are of transit LTS 2 range in mode share from 3.7% 
to 21.0%, with the lower range value being impacted by a higher trip length and duration. 
 

Sunnyside, the more suburban of the middle-income census tracts, has a higher 
transit mode share to Aurora than that same trip from City Park West, its urban 
counterpart. This is likely because the transit level of traffic stress from Aurora to 
Sunnyside is only a value of two, while to City Park West, it is LTS 3. This indicates that the 
trip from City Park West is more stressful than the trip from Sunnyside with respect to the 
number of transfers (since light rail transit does not serve this trip). This further 
demonstrates how the transit experience, measured in traffic stress, can influence mode 
share even when there may be disparities in trip length and distance. 
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CONCLUSION 
In measuring mode shift before and after a drastic increase in gas price, this study sought to 
understand how certain areas in Denver, CO, with various environmental and demographic 
characteristics, are better equipped to return to a normal level of service than other areas. 
In terms of this mode shift, we focused not on how individuals are behaving today, but on 
what they have the ability to do in a disruptive gas price event based upon these 
environmental and demographic characteristics. Results of the multinomial logistic 
regression mode choice model revealed that certain neighborhoods and individuals are 
better able to withstand a disruptive gas price event. Three attributes are most relevant in 
these trends: household proximity to downtown, median household income, and the 
availability of multi-modal transportation options. All told, the closer to downtown, the 
higher the household income, and the better the accessibility to multi-modal forms of 
transportation, the better able certain areas in Denver are to react to the disruptive event.  
 

Several limitations should be considered in this research. For the traffic stress 
analysis, lack of data about average annual daily traffic or actual speeds along roads limited 
the analysis of stress along certain roads. Additionally, the sidewalk data provided by the 
City and County of Denver was ten years old and at times did not offer an accurate 
understanding of sidewalk presence and condition. In the assignment of traffic stress to 
trips, extrapolating from the TAZ to the census tract diminished accuracy of the trips, 
further exacerbated by the random selection of census tract or neighborhood centroid as 
the start and end of each trip. In the development of the mode choice model, it was assumed 
that the total of car, transit, walk and bicycle modes would equal 100%, which is not 
necessarily accurate as some people telecommute and work from home. Finally, the model 
did not take into account the fact that many modes can be combined for certain trips, such 
as walking to transit. 
 

Despite these limitations and assumptions, the contribution of this work to 
understanding household transportation mode choice under a catastrophic gas event is 
critical. This research offers an important approach to valuing multi-modal transportation 
and to understanding the latent worth of this infrastructure, even if it is not heavily used 
today. Future direction of this research is promising. By utilizing the mode choice model to 
understand where reductions in traffic stress offer significant shifts to these alternative 
modes, we can better understand what infrastructure improvements to the current network 
will facilitate this resiliency. These improvements can ensure that a lower stress 
environment exists through enhancements such as buffered bicycle lanes or better bus 
service. Such future applications of this research can be utilized to connect and improve 
bicycle, pedestrian, and transit networks, further strengthening these alternative 
transportation modes so that they may support the communities that they serve. 
 

Our work reveals that to build more resiliency into communities and 
neighborhoods, policy makers and leaders need to improve accessibility to low stress 
alternatives to driving, particularly in areas that possess lower income households and are 
farther from the central business district. Increasing the supply of affordable housing in 
closer proximity to jobs is another possible solution. By better supporting the more 
vulnerable neighborhoods, we are supporting improved resiliency and strength of the 
community as a whole. These solutions will strengthen communities by offering adaptive 
and alternative transportation choices, supporting the economic and social strength of cities 
and towns.  
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