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ABSTRACT 1 
Roadway congestion has been a major public policy issue in the United States for many years. 2 

There has been an ongoing debate as to whether congestion can be reduced significantly through 3 

adding additional roadway capacity, or if adding capacity would only induce traffic growth 4 

without any long-term reduction in congestion. The availability of real-time traffic data supports 5 

cross-sectional analysis across regions to study factors underlying congestion. In a regression 6 

analysis of 74 regions, it is found that more arterial capacity is strongly related to less 7 

congestion, but that more freeway capacity is not. The public policy implications are that it is 8 

critical that an adequate network of streets be constructed in growing areas rather than relying 9 

too much on a system of freeways. In already-congested areas, arterial capacity improvements 10 

likely would be more effective at reducing congestion than adding freeway capacity. Otherwise, 11 

the regression model suggests that congestion is more a sign of regional success than a problem 12 

than can be solved. Only two other independent variables were found to be highly significant in 13 

predicting congestion. Higher incomes increase congestion. Higher incomes attract population 14 

growth, which also increases congestion. 15 

 16 

 17 

 18 

 19 

 20 
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INTRODUCTION 1 
Roadway congestion is a huge public policy issue in the United States. When Metropolitan 2 

Planning Organizations (MPOs) produce long-term regional transportation plans (RTP), the 3 

word “congestion” and the closely related term “delay” appear dozens and sometimes hundreds 4 

of times. Environmental Impact Statements (EIS) prepared for roadway projects similarly 5 

emphasize congestion and delay. Often, the core metrics in both RTP and EIS documents involve 6 

delay and congestion. 7 

One series of research reports has framed the congestion discussion more than any other. 8 

Between 1986 and 2012, Lomax and fellow researchers at the Texas Transportation Institute 9 

have published a series of 10 reports comparing congestion across U.S. regions. Beginning with 10 

the 2001 report, these reports have been titled Urban Mobility Report (UMR) (1). Whenever 11 

each new edition of the UMR has been published, it attracts great media attention – nationally, 12 

but especially in the regions that the UMR indicates are the most congested. 13 

Conclusions in the most recent UMR (December 2012) include: “Congestion wastes a massive 14 

amount of time, fuel and money. In 2011: ….5 billion hours of extra time…  [and] …$121 15 

billion of delay and fuel cost (2). 16 

 The UMR often has been cited as a justification for adding roadway capacity. However, 17 

the UMR itself has argued for a balanced set of approaches. The 2012 report includes multiple 18 

strategies including both supply and demand strategies: 19 

 Get as much service as possible from what we have 20 

 Add capacity in critical corridors 21 

 Change the usage patterns  22 

 Provide choices 23 

 Diversity the development patterns 24 

 Realistic expectations (2) 25 

 There have been many criticism of the UMR including those made an extensive recent 26 

critique by Litman (3). Litman’s criticisms include: 27 

 Using free-flow speeds as the basis for estimating delay is unrealistic in urban areas and 28 

even includes using baseline speeds that exceed posted speed limits 29 

 Travel time is valued too highly. 30 

 Induced travel from added roadway capacity is not accounted for. 31 

 The benefits of reduced overall travel time in more compact but congested urban areas 32 

are not highlighted. 33 

 A debate about roadway capacity and induced travel has continued for many years A 34 

recent review of the research literature published on induced travel between 1997 and 2012 35 

concluded: “Thus, the best estimate for the long-run effect of highway capacity on VMT is an 36 

elasticity close to 1.0, implying that in congested metropolitan areas, adding new capacity to the 37 

existing system of limited-access highways is unlikely to reduce congestion or associated GHG 38 

[greenhouse gas] in the long-run” (4). This finding does not directly contradict the UMR, which 39 

only attempts to measure regional congestion. However, it undermines the policy 40 

recommendation that adding roadway capacity will reduce congestion over the long-term. 41 

  42 
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 In addition to the large debate about whether additional roadway capacity can reduce 1 

congestion, there are a wide range of more anecdotal assertions made about the relationships 2 

about regional congestion. Examples include: 3 

 UMR 4 

o Smaller urban areas with a major interstate highway – Austin, Bridgeport, Salem. 5 

High volume highways running through smaller urban areas generate more traffic 6 

congestion than the local economy causes by itself. 7 

o Geographic constraints – Honolulu, Pittsburgh, Seattle. Water features, hills and 8 

other geographic elements result more traffic congestion than regions with several 9 

alternative routes (2). 10 

 Cox 11 

o Inadequate freeway capacity – especially regions where proposed roads were 12 

abandoned after opposition arose  13 

o Density is a primary cause of congestion (5).  14 

 Those who argue for increased roadway capacity generally argue that it is economically 15 

justified because of the huge costs of congestion. The UMR often is cited in support. However, 16 

Dumbaugh uses data to argue that congestion is largely a product of an effective economy. He 17 

found a highly-significant positive relationship between congestion and regional Gross Domestic 18 

Product (GDP) per capita (6). 19 

Here is a brief summary of this debate: Traffic congestion in the U.S. is a big issue. There 20 

is uncertainty about the causes. There is uncertainty about the solutions – both in terms of 21 

effectiveness and economic value. The primary area where the conversation has advanced in 22 

recent years is in the quality of the data. Instead of relying only on models of congestion in each 23 

region, as was done with the UMR prior to 2010, INRIX and TomTom now publish data on 24 

regional traffic congestion collected from vehicles. This supports much more accurate 25 

comparison across regions.  26 

 27 

METHODOLOGY 28 
In order to investigate that underlying causes of congestion, the INRIX Index is used as the 29 

dependent variable in a regression analysis. INRIX provides this definition of the INRIX Index: 30 

The INRIX Index represents the barometer of congestion intensity. For a road 31 

segment with no congestion, the INRIX Index would be zero. Each additional 32 

point in the INRIX Index represents a percentage point increase in the average 33 

travel time of a commute above free-flow conditions during peak hours. An INRIX 34 

Index of 30, for example, indicates a 20-minute free-flow trip will take 26 minutes 35 

during the peak travel time periods with a 6-minute (30 percent) increase over 36 

free-flow (7).  37 

The 2013 INRIX index ranges from 1 to 36 (highest for the Honolulu region). 38 

 A cross sectional regression analysis was done using data from 74 U.S. regions. The 39 

regions included in this study are all regions where data are available for both the INRIX Index 40 

(the dependent variable) and the TTI Urban Mobility Study (UMR) dataset (the source of some 41 

of the independent variables). The regions and codes used in some of the graphics are listed in 42 

Table 1. 43 
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TABLE 1: Regions Included in Analysis and Codes Used in Graphics 1 
 2 

Region code 

Akron OH Akr 

Albany NY Alb 

Albuquerque NM ABQ 

Allentown-Bethlehem PA-NJ All 

Atlanta GA Atl 

Austin TX Aus 

Bakersfield CA Bak 

Baltimore MD Bal 

Baton Rouge LA Bat 

Birmingham AL Bir 

Boston MA-NH-RI Bos 

Bridgeport-Stamford CT-NY Bri 

Buffalo NY Buf 

Charleston-North Charleston SC CHS 

Charlotte NC-SC CLT 

Chicago IL-IN Chi 

Cincinnati OH-KY-IN Cin 

Cleveland OH Cle 

Colorado Springs CO COS 

Columbus OH Col 

Dallas-Fort Worth-Arlington TX Dal 

Dayton OH Day 

Denver-Aurora CO Den 

Detroit MI Det 

El Paso TX-NM ELP 

Fresno CA Fre 

Grand Rapids MI Gra 

Hartford CT Har 

Honolulu HI Hon 

Houston TX Hou 

Indianapolis IN Ind 

Jacksonville FL Jac 

Kansas City MO-KS Kan 

Las Vegas NV LAS 

Little Rock AR Lit 

Los Angeles-Long Beach-Santa 

Ana CA LAX 

Louisville KY-IN Lou 

Memphis TN-MS-AR Mem 

Miami FL Mia 

Region (continued) code 

Milwaukee WI Mil 

Minneapolis-St. Paul MN Min 

Nashville-Davidson TN Nas 

New Haven CT HVN 

New Orleans LA NOL 

New York-Newark NY-NJ-CT NYC 

Oklahoma City OK Okl 

Omaha NE-IA Oma 

Orlando FL Orl 

Oxnard CA Oxn 

Philadelphia PA-NJ-DE-MD Phi 

Phoenix-Mesa AZ Pho 

Pittsburgh PA Pit 

Portland OR-WA Por 

Providence RI-MA Pro 

Raleigh-Durham NC Ral 

Richmond VA Ric 

Riverside-San Bernardino CA Riv 

Rochester NY Roc 

Sacramento CA Sac 

Salt Lake City UT Sal 

San Antonio TX SAT 

San Diego CA SAN 

San Francisco-Oakland CA SFO 

San Jose CA SJC 

Sarasota-Bradenton FL Sar 

Seattle WA Sea 

Springfield MA-CT Spr 

St. Louis MO-IL STL 

Tampa-St. Petersburg FL Tam 

Toledo OH-MI Tol 

Tucson AZ Tuc 

Tulsa OK Tul 

Virginia Beach VA Vir 

Washington DC-VA-MD Was 

Note: Codes are generally either the first 

three letters of the region’s central city or 

the region’s primary airport 
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Candidate independent variables from the hypotheses discussed above include: 1 

 ln(regional population), 2 

 ln(density), 3 

 median household income, 4 

 population per freeway lane mile, and 5 

 population per arterial lane mile. 6 

All these variables would be expected to be positively related to congestion. Other candidate 7 

independent variables based on other hypotheses about congestion include: 8 

 transit work mode share (expected negative effect) 9 

 proportion of housing built before 1940 (expected negative effect because of more 10 

walkable mixed use), and 11 

 jobs/worker ratio (some of the regions in Table 1 are subregions that export workers, e.g. 12 

Riverside CA and Bridgeport CT); ratio is expected to be positively related to 13 

congestion). 14 

A significant challenge in modeling congestion is that there are significant correlations between 15 

these candidate variables. In order to limit the level of covariance, all of the variables are first 16 

transformed as deviations from the means. Correlations between the dependent variable and the 17 

independent variables are given in Table 2. 18 

 19 

TABLE 2: Covariance in Candidate Variables  20 

 pop dens hsd inc pop/fwy pop/art transit pre-40 job/wrk 

INRIX Index 0.59 0.69 0.66 0.17 0.69 0.61 -0.01 0.15 

ln(population)  0.59 0.33 0.21 0.33 0.60 0.02 0.09 

ln(density)   0.54 0.42 0.60 0.76 0.22 0.05 

median hsd inc    0.02 0.51 0.55 0.12 0.16 

pop/freeway lane mile     0.27 0.24 -0.26 -0.02 

pop/arterial lane mile      0.51 -0.06 -0.04 

work transit share       0.37 0.19 

pre-1940 housing        0.02 

Note: correlations greater than 0.50 shown in yellow. 21 

 22 

As shown in Table 2, the INRIX Index is strongly correlated with 5 of the variables: 23 

 population 24 

 density, 25 

 household income, 26 

 population per arterial lane mile, and 27 

 work transit mode share. 28 

In many cases these 5 candidate variables also are strongly correlated with each other. When 29 

regression is done with independent variables that are highly correlated, multiple problems can 30 

result including coefficients with high standard errors and low significance, and coefficients with 31 

the wrong sign or implausible magnitudes (8). 32 

 Two steps were taken to remove this multicollinearity problem. First, the 2 most highly-33 

correlated variables were dropped from the regression model: transit work mode share and 34 

density. While density often is mentioned as a cause of congestion, it is highly correlated with 35 

population per arterial lane mile. This arterial capacity measure is also a density measure and is 36 
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more central to this study than population per square mile. A sensitivity analysis is presented 1 

later in this paper with the population density variable in the model and the roadway variables 2 

excluded. 3 

 With these two variables excluded, the only high correlation between the independent 4 

variables shown in Table 2 is a correlation of 0.51 between population per arterial lane mile and 5 

median household income. Median household income also is strongly correlated with 6 

ln(population). These correlations with income were addressed by transforming the income 7 

variable by dividing median household income by ln(population). The covariance matrix for the 8 

6 independent variables used in the initial model are shown in Table 3. The correlations range 9 

from 0.25 to 0.34. The multicollinearity issue has been addressed successfully. 10 

 11 

TABLE 3: Covariance in Model Variables  12 

 ln(pop) income pop/fwy pop/art pre-40  job/wrkr 

INRIX Index 0.59 0.34 0.17 0.69 -0.01 0.15 

ln(population)  -0.25 0.21 0.33 0.02 0.09 

med hsd inc/ln(pop)   -0.10 0.34 0.10 0.08 

pop/freeway lane miles    0.27 -0.26 -0.02 

pop/arterial lane miles     -0.06 -0.04 

pre-1940 housing      0.02 

Note: The INRIX Index is the dependent variable. 13 

 14 

The definitions of the independent variables and the data sources are: 15 

 Population – Regional population is taken from the 2010 UMR data The UMR data are 16 

used to assure consistency with the other UMR-based measures discussed below, e.g. population 17 

per freeway lane mile. The variable form is ln(population/1000). 2010 UMR data were used 18 

because not all of the variables were available in the 2012 UMR data. 19 

 Median household income – Median household income data are taken from the American 20 

Community Survey for the 5-year period 2009-2013. It is transformed by dividing by 21 

ln(population) to reduce collinearity as described above. 22 

 Freeway lane miles – Freeway lane miles data are from the UMR data. The model 23 

variable is population in thousands per arterial lane mile. 24 

 Arterial lane miles– Arterial lane miles data are from the UMR data. The model variable 25 

is population in thousands per arterial lane mile.  26 

 Proportion of housing build before 1940 – Many researchers studying transportation- lane 27 

use interactions have noted that housing built prior to 1940 typically is in walkable 28 

neighborhoods with small blocks, and that most housing built since then (at least until recently) 29 

is in suburban areas with less street connectivity, and often without sidewalks. Researchers have 30 

found statistically significant relationships between this variable and travel behavior. These data 31 

are from the American Community Survey for the 5-year period 2009 to 2013 32 

 Jobs/worker ratio – The jobs/worker ratio data are calculated from the 2009-2013 33 

American Community Survey. Taking data for all workers who work outside the home, the 34 

numerator is the number of jobs commuted to inside the region, and the denominator is the 35 

number of workers commuting from inside the region. This variable was included to account for 36 

sub-regions like Riverside-San Bernardino-Ontario California. This region is in the dataset but 37 

includes many bedroom communities within the greater Los Angeles region. In the dataset, this 38 
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region-has the smaller jobs/worker ratio – 0.87. It would be expected that this out-commuting 1 

would shift traffic (and related congestion) to outside the sub-region.  2 

 Summary statistics for these variables are shown in Table 2. 3 

 4 

TABLE 4: Summary Statistics for Independent and Dependent Variables 5 

 minimum maximum mean standard dev 

INRIX Index 1.00 35.60 9.45 7.29 

ln(population) 6.38 9.85 7.47 0.77 

med hsd inc/ln(pop) 5583 12103 7647 1310 

pop/freeway lane mile 0.69 3.82 1.58 0.57 

pop/arterial lane mile 0.32 1.37 0.57 0.16 

pre-1940 housing 0.00 0.35 0.12 0.10 

jobs/workers ratio 0.87 1.12 1.01 0.04 

 6 

PRELMINARY REGRESSION MODELS 7 
The regression results for the 74-region cross-sectional congestion model with the 6 independent 8 

variables listed in Table 4 are shown in Table 5.  9 

 10 

Table 5: Regression Model Results with 6 Independent Variables 11 

Regression Statistics      

Multiple R 0.850      

R Square 0.723      

Adjusted R Square 0.698      

Standard Error 4.036      

Observations 74      

       

ANOVA       

  df SS MS F Signif F  

Regression 6 2845.41 474.24 29.11 7.09E-17  

Residual 67 1091.49 16.29    

Total 73 3936.90        

       

  Coef. Std Err t Stat P-value Low 95% Up 95% 

Intercept 9.45 0.47 20.14 0.00000 8.51 10.39 

ln(population) 5.10 0.72 7.05 0.00000 3.66 6.55 

med hsd inc/ln(pop) 0.00184 0.00043 4.25 0.00007 0.00098 0.00270 

pop/freeway lane mile -0.47 0.90 -0.53 0.60052 -2.27 1.32 

pop/arterial lane mile 19.26 3.80 5.06 0.00000 11.67 26.85 

pre-1940 housing -3.19 5.06 -0.63 0.53087 -13.30 6.92 

jobs/workers ratio 14.79 11.06 1.34 0.18558 -7.28 36.86 

 12 
 13 
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 In the model in Table 4, there are 3 independent variables with statistical significance at 1 

greater than the 99.99% confidence level:  2 

 ln(population),  3 

 transformed income, and  4 

 population per arterial lane mile.  5 

The other 3 variables are not statistically significant at the 95% confidence level. The 6 

coefficients for 2 of the variables - pre-1940 housing and jobs/workers ratio - have the expected 7 

signs. The other variable, population per freeway lane mile, not only is not statistically 8 

significant, but the sign of the estimated coefficient is negative. As freeway capacity is in the 9 

denominator, a negative coefficient suggests that more freeway capacity causes more congestion. 10 

There is no evidence in these data that freeway capacity helps to reduce regional congestion. 11 

 The model presented above includes 3 very strong independent variables and 3 weak 12 

independent variables. The regression analysis was redone with only the 3 highly-significant 13 

independent variables. The results are shown in Table 6. 14 

 15 

Table 6: Regression Model Results with 3 Independent Variables 16 

SUMMARY OUTPUT      

       

Regression Statistics      

Multiple R 0.844      

R Square 0.713      

Adjusted R Square 0.701      

Standard Error 4.018      

Observations 74      

       

ANOVA       

  df SS MS F Signif F  

Regression 3 2806.902 935.6341 57.9595 6.1E-19  

Residual 70 1130.003 16.14289    

Total 73 3936.905        

       

  Coef. Std Err t Stat P-value Low 95% Up 95% 

Intercept 9.45 0.47 20.24 0.00000 8.52 10.38 

ln(population) 5.19 0.70 7.37 0.00000 3.79 6.59 

med hsd inc/ln(pop) 0.00192 0.00042 4.62 0.00002 0.00109 0.00275 

pop/arterial lane mile 18.38 3.60 5.10 0.00000 11.19 25.56 

 17 

 Comparing the models in Tables 5 and 6, the adjusted R-squared for the 3-variable 18 

model, 0.701, is higher than the adjusted R-squared for the 6-variable model, 0.698. This 19 

suggests that the additional 3 variables add little, if any, explanatory power. Therefore, the 3 not-20 

significant variables were dropped from further analysis. 21 

 The 3-variable model carried forward includes the population per arterial lane mile 22 

variable and does not include a population density variable. Two sensitivity analyses were done 23 

by substituting first a) population per square mile and then b) ln(population per square) for the 24 
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arterial capacity variable. In both cases, the density variable is highly significant. However, the 1 

overall model fit in both cases is poorer than with the arterial capacity variable. The adjusted R-2 

squared is 0.616 with density and 0.631 with ln(density The 3-variable model including 3 

population per arterial lane mile is the better model of regional congestion (adjusted R-squared = 4 

0.0701). 5 

 Figures 1 and 2 are scatter plots of the model outputs vs. the INRIX Index labeled with 6 

the codes for each region In Table 1, with Figure 2 showing detail for the less congested regions.  7 

 8 

9 
FIGURE 1: 3-Variable Regression Model Outputs vs. INRIX Index (using regional labels 10 

in Table 1) 11 
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1 
FIGURE 2: 3-Variable Regression Model Outputs vs. INRIX Index Detail (using regional 2 

labels in Table 1) 3 
 4 

As shown in Figures 1 and 2, the model generally matches the INRIX Index well. However, the 5 

model value of Honolulu, 27, is considerably lower than the INRIX Index for Honolulu, 36. The 6 

Honolulu region has the largest population per arterial lane mile of any of the 74 regions in the 7 

dataset (i.e. the least arterial capacity per person). Both the fit with Honolulu and the overall 8 

model fit are improved by transforming this variable into a steeper relationship. Two alternative 9 

formulations of the 3-variable model were tested: 10 

 Quadratic: Honolulu model 31, adjusted R-squared 0.724 (vs. 0.701 for the linear form) 11 

 Cubic: Honolulu model 34, adjusted R-squared 0.732 12 
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Care must be taken in overfitting the model to a single point, so the linear model presented in 1 

Table 5 will be retained as the recommended model. However, these alternative regression 2 

models reinforce the conclusion that arterial capacity is a critical factor in regional congestion. 3 

 The underlying workings of the 3 variables in the model are illustrated using the most 4 

congested region Honolulu (INRIX Index 36, model 27) and an uncongested region Tucson 5 

(INRIX Index 1 and model 1). The regression intercept is 9.45, i.e. the model predicts a 6 

congestion index of 9 for a region with mean values for all of the independent variables. Each 7 

region has a population of about 1 million which reduces the model estimate by about 3. 8 

Therefore, the effects from the other 2 independent variables add up to -5 for the Tucson region 9 

and +21 for the Honolulu region. As shown in Figure 3, in both cases the income and arterial 10 

capacity variables work together. Tucson has lower income and more arterial capacity than 11 

average, and Honolulu has higher income and less arterial capacity than average. In both cases, 12 

the arterial capacity variable is much more important than the income variable. In the quadratic 13 

and cubic models, the arterial effect for Honolulu is even stronger. 14 

 15 

 16 
FIGURE 3: Comparison of Independent Variable Effects in Two Regions 17 
 18 

COMPARISON OF AGGREGATE MODEL TO A DISAGGREGATE MODEL OF 19 

REGIONAL CONGESTION 20 
As shown in Table 2, the correlation between the INRIX Index and a single regional aggregate 21 

variable is as high as 0.691 (population per arterial lane mile). The correlation of the 3-variable 22 

linear model outputs with the INRIX Index is 0.844. The correlation with the 3-variable 23 

including the cubic arterial capacity variable is 0.862. These correlations are high compared to 24 

many statistical results in social science. 25 

 How does the fit of the aggregate model compare with the fit of the model based on 26 

disaggregate roadway segment data? There is one such model – the model underlying the Texas 27 

Transportation Institute’s Urban Mobility Study (UMR). The UMR computes multiple 28 

performance measures including the Travel Time Index (TTI). At first glance, the TTI Index 29 

appears to be essentially the same value as the INRIX Index although it is expressed differently:  30 
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Travel Time Index (TTI) – The ratio of travel time in the peak period to travel 1 

time at free-flow conditions. A Travel Time Index of 1.30 indicates a 20-minute 2 

free-flow trip takes 26 minutes in the peak period (2).  3 

 Therefore a TTI of 1.30 would appear be equivalent to an INRIX Index value of 30. Both 4 

numbers would indicate that congested travel times are 130% of uncongested travel times. 5 

However. There appear to be differences between the two indices as is discussed below. 6 

In the most recent UMR editions, INRIX data are incorporated into the UMR model. Therefore, 7 

in order to get a clean comparison of UMR with INRIX, it is necessary to use earlier UMR 8 

congestion estimates. This requires going back to the 2008 UMR. 2008 is several years earlier 9 

than the 2013 INRIX Index numbers. However, traffic volumes have been relatively flat in most 10 

regions during this time period, so regional congestion likely was similar in both years. (For the 11 

U.S. as a whole, the Federal Highway Administration estimates that the highest year for vehicle 12 

miles traveled over the period 2005-2014 was 2007, and that the total VMT for the other years 13 

was within 2% of the 2007 level.) (9)  14 

 The UMR estimates delay on each roadway segment for peak and off-peak travel periods, 15 

and for the peak and off-peak directions. It then sums these segment-by-segment estimates of 16 

recurring delay and incident-related delay (10). Compared to the INRIX Index values, the UMR 17 

TTI values generally are higher, especially in regions with lower INRIX Index scores. For 18 

example the 2008 UMR TTI for the Tucson region is 24. Even after integrating INRIX data into 19 

the UMR, the 2012 UMR TTI for the Tucson region is 16 (vs. an INRIX Index value of 1 as 20 

discussed above). It appears that there is a fundamental difference in the way the two indices are 21 

conceptualized. The INRIX Index compares congested travel times to uncongested travel times 22 

as actually measured during off-peak travel times. It appears the UMR may be comparing 23 

modeled congested travel times to a hypothetical state where there are no traffic signals at all. In 24 

regions like Tucson that are heavily reliant on arterials, the calculated TTI is consistently high 25 

relative to the INRIX Index. The correlation between the 2008 UMR TTI and the INRIX Index is 26 

only 0.656. Figure 4 shows the 2008 UMR vs. INRIX Index scatter plot.  27 

 The correlation with the INRIX Index has increased to 0.824 in the 2010 UMR and 28 

increased again to 0.839 in the 2012 UMR. However, even with inclusion of the “dependent” 29 

INRIX Index variable as part of the UMR model, the correlation between the TTI and the INRIX 30 

Index is no better than for the 3-variable aggregate model presented above (0.844 for the linear 31 

model and 0.862 for the cubic version). This suggests both that the aggregate model is fairly 32 

good, and that there are limitations in the disaggregate approach. 33 

 34 
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 1 
FIGURE 4: 2008 UMR TTI vs. INRIX Index (using regional labels in Table 1) 2 
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 1 

DISCUSSION 2 
It would be logical to assume that adding up calculated delay across thousands individual 3 

roadway segments would be much more accurate than using an aggregate model with only 3 4 

regional values. However, this assumes that delay on each roadway segment can be estimated 5 

accurately with models that treat roadway segments independently. These are called “static” 6 

models in contrast to “dynamic” models that account for interactions between roadway 7 

segments. Static models require much less computing time than dynamic versions and also 8 

converge nicely to consistent results. These are the reasons why static models are generally used 9 

instead of dynamic models However, it is well known that static models are poor at estimating 10 

congestion delay, particularly for freeway links. Here is an excerpt from Dynamic Traffic 11 

Assignment: A Primer that describes the limitations of static models:  12 

“In a static model, inflow to a link is always equal to the outflow: the travel time 13 

simply increases as the inflow and outflow (volume) increases. The volume on a 14 

link may increase indefinitely and exceed the physical capacity (in vehicles per 15 

hour) of the link, as represented by a volume-to-capacity (V/C) ratio > 1… The 16 

drawback of using V/C is that it does not directly correlate with any physical 17 
measure describing congestion (e.g., speed, density, or queue [emphasis added] 18 

Traffic initially becomes congested (e.g., queuing occurs) at the end of a link 19 

because link inflow is greater than link outflow... “ 20 

 This phenomenon brings forth the question of congestion spill-back, which 21 

is not represented in a static model. At the moment that the link inflow becomes 22 

equal to the outflow (as described above), the congestion then continues to spread 23 

upstream into whichever upstream links are feeding traffic into the congested link. 24 

The outflows of these links are thus reduced, and the process repeats as described 25 

above. This queue spillback process also describes how a long queue (congested 26 

traffic) can be represented over a sequence of links in a dynamic traffic model.” 27 

[but not in static models] (10) 28 

This spillback delay cannot be estimated accurately with static models (12). 29 

 Along with INRIX Index, INRIX also publishes a list of the most congested corridors (7). 30 

All of the over 200 corridors shown for the U.S. appear to be freeway corridors. These most 31 

congested freeways all experience many hours of the type of traffic “spillback” discussed in the 32 

excerpt above. In contrast arterial roadways can have relatively slow average speeds, but queues 33 

are broken up by traffic signals, and there are many more opportunities for drivers to leave one 34 

facility and shift to another roadway. Extreme congestion in the U.S. is more of a freeway 35 

phenomenon than an arterial one. Without accounting for spillback, estimated delays on these 36 

freeway links are wrong. Adding together thousands of inaccurate estimates for individual links 37 

will not result in an accurate total estimate. 38 

 39 

  40 
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CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 1 
Regional Transportation Plans (RTP) and roadway Environmental Impact Statements (EIS) 2 

routinely show large reductions in future congestion from adding freeway capacity. These 3 

performance measures are based on static models that fail to account for spillback on freeways. 4 

In the regression model presented above, additional freeway capacity does not reduce regional 5 

congestion.  6 

 More arterial capacity strongly reduces congestion in the model. The public policy 7 

implications are that it is critical that an adequate network of streets be constructed in growing 8 

areas rather than relying too much on a system of freeways. In already-congested areas, arterial 9 

capacity improvements likely would be more effective at reducing congestion than adding 10 

freeway capacity. 11 

 Otherwise, the regression model suggests that congestion is more a sign of regional 12 

success than a problem that can be solved. Higher incomes increase congestion. Higher incomes 13 

attract population growth which also increases congestion. 14 

 The critical role of arterial capacity in reducing regional congestion suggests that research 15 

is needed into how the quality of the arterial network contributes to congestion relief (in addition 16 

to the simple quantity variable included in the regression model). In Figure 1, the model 17 

underestimates congestion in some highly-congestion regions including the Austin and Los 18 

Angles regions; but overestimates congestion in other congested regions including the New York 19 

City and Washington DC regions. Are there measurable differences between the New York City 20 

and Washington DC arterial networks vs. the Austin and Los Angeles arterial networks that 21 

make the first pair more effective than the second pair? Inclusion of local streets into the 22 

analyses also would be useful. 23 

 This paper has been focused on congestion because of its emphasis in transportation 24 

planning, and because of the availability of consistent data across regions. However, other travel 25 

metrics are at least as important, including total travel time, and the availability of transportation 26 

alternatives. Higher regional population and higher income may increase congestion, but they 27 

also can support shorter average trip lengths and more travel choices. These benefits may offset 28 

the costs of added congestion. More research is needed in these areas. 29 

  30 
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